674 research outputs found

    Linking Human Health to Biological Diversity

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74648/1/j.1523-1739.1997.0110061459.x.pd

    Electronic structure, magnetism and superconductivity of MgCNi3_{3}

    Full text link
    The electronic structure of the newly discovered superconducting perovskite MgCNi3_3 is calculated using the LMTO and KKR methods. The states near the Fermi energy are found to be dominated by Ni-d. The Stoner factor is low while the electron-phonon coupling constant is estimated to be about 0.7, which suggests that the material is a conventional type of superconductor where TC_C is not affected by magnetic interactions. However, the proximity of the Fermi energy to a large peak in the density of states in conjunction with the reported non-stoichiometry of the compound, has consequences for the stability of the results.Comment: 3 pages, 4 figure

    Using the stated preference method for the calculation of social discount rate

    Get PDF
    The aim of this paper is to build the stated preference method into the social discount rate methodology. The first part of the paper presents the results of a survey about stated time preferences through pair-choice decision situations for various topics and time horizons. It is assumed that stated time preferences differ from calculated time preferences and that the extent of stated rates depends on the time period, and on how much respondents are financially and emotionally involved in the transactions. A significant question remains: how can the gap between the calculation and the results of surveys be resolved, and how can the real time preferences of individuals be interpreted using a social time preference rate. The second part of the paper estimates the social time preference rate for Hungary using the results of the survey, while paying special attention to the pure time preference component. The results suggest that the current method of calculation of the pure time preference rate does not reflect the real attitudes of individuals towards future generations

    Magnetism, Spin-Orbit Coupling, and Superconducting Pairing in UGe2_2

    Full text link
    A consistent picture on the mean-field level of the magnetic properties and electronic structure of the superconducting itinerant ferromagnet UGe2_2 is shown to require inclusion of correlation effects beyond the local density approximation (LDA). The "LDA+U" approach reproduces both the magnitude of the observed moment, composed of strongly opposing spin and orbital parts, and the magnetocrystalline anisotropy. The largest Fermi surface sheet is comprised primarily of spin majority states with orbital projection mâ„“m_{\ell}=0, suggesting a much simpler picture of the pairing than is possible for general strong spin-orbit coupled materials. This occurrence, and the quasi-two-dimensional geometry of the Fermi surface, support the likelihood of magnetically mediated p-wave triplet pairing.Comment: accepted for publication in Phys. Rev. Lett; URL for better quality image of Fig.3 (2MB) at http://yammer.ucdavis.edu/public/UGe2/fig3.ep

    On the Internal Absorption of Galaxy Clusters

    Full text link
    A study of the cores of galaxy clusters with the Einstein SSS indicated the presence of absorbing material corresponding to 1E+12 Msun of cold cluster gas, possibly resulting from cooling flows. Since this amount of cold gas is not confirmed by observations at other wavelengths, we examined whether this excess absorption is present in the ROSAT PSPC observations of 20 bright galaxy clusters. For 3/4 of the clusters, successful spectral fits were obtained with absorption due only to the Galaxy, and therefore no extra absorption is needed within the clusters, in disagreement with the results from the Einstein SSS data for some of the same clusters. For 1/4 of the clusters, none of our spectral fits was acceptable, suggesting a more complicated cluster medium than the two-temperature and cooling flow models considered here. However, even for these clusters, substantial excess absorption is not indicated.Comment: accepted by the Astrophysical Journa

    SN 2005hj: Evidence for Two Classes of Normal-Bright SNe Ia and Implications for Cosmology

    Get PDF
    HET Optical spectra covering the evolution from about 6 days before to about 5 weeks after maximum light and the ROTSE-IIIb unfiltered light curve of the "Branch-normal" Type Ia Supernova SN 2005hj are presented. The host galaxy shows HII region lines at redshift of z=0.0574, which puts the peak unfiltered absolute magnitude at a somewhat over-luminous -19.6. The spectra show weak and narrow SiII lines, and for a period of at least 10 days beginning around maximum light these profiles do not change in width or depth and they indicate a constant expansion velocity of ~10,600 km/s. We analyzed the observations based on detailed radiation dynamical models in the literature. Whereas delayed detonation and deflagration models have been used to explain the majority of SNe Ia, they do not predict a long velocity plateau in the SiII minimum with an unvarying line profile. Pulsating delayed detonations and merger scenarios form shell-like density structures with properties mostly related to the mass of the shell, M_shell, and we discuss how these models may explain the observed SiII line evolution; however, these models are based on spherical calculations and other possibilities may exist. SN 2005hj is consistent with respect to the onset, duration, and velocity of the plateau, the peak luminosity and, within the uncertainties, with the intrinsic colors for models with M_shell=0.2 M_sun. Our analysis suggests a distinct class of events hidden within the Branch-normal SNe Ia. If the predicted relations between observables are confirmed, they may provide a way to separate these two groups. We discuss the implications of two distinct progenitor classes on cosmological studies employing SNe Ia, including possible differences in the peak luminosity to light curve width relation.Comment: ApJ accepted, 31 page

    Observations of the Hubble Deep Field with the Infrared Space Observatory. IV. Association of sources with Hubble Deep Field Galaxies

    Get PDF
    We discuss the identification of sources detected by ISO at 6.7 and 15 micron in the Hubble Deep Field (HDF) region. We conservatively associate ISO sources with objects in existing optical and near-infrared HDF catalogues using the likelihood ratio method, confirming these results (and, in one case, clarifying them) with independent visual searches. We find fifteen ISO sources to be reliably associated with bright [I(AB) < 23] galaxies in the HDF, and one with an I(AB)=19.9 star, while a further eleven are associated with objects in the Hubble Flanking Fields (ten galaxies and one star). Amongst optically bright HDF galaxies, ISO tends to detect luminous, star-forming galaxies at fairly high redshift and with disturbed morphologies, in preference to nearby ellipticals.Comment: 8 pages, LaTeX (using mn.sty, epsfig), 3 figures (2 Postscript, 1 GIF) included. Gzipped Postscipt version available from http://artemis.ph.ic.ac.uk/hdf/papers/ps/. Further information on ISO-HDF project can be found at http://artemis.ph.ic.ac.uk/hdf

    Type Ia Supernovae and Cosmology

    Full text link
    I discuss the use of Type Ia supernovae (SNe Ia) for cosmological distance determinations. Low-redshift SNe Ia (z < 0.1) demonstrate that the Hubble expansion is linear with H_0 = 72 +/- 8 km/s/Mpc, and that the properties of dust in other galaxies are generally similar to those of dust in the Milky Way. The measured luminosity distances of SNe Ia as a function of redshift have shown that the expansion of the Universe is currently accelerating, probably due to the presence of repulsive dark energy such as Einstein's cosmological constant (Lambda). From about 200 SNe Ia, we find that Omega_Lambda - 1.4 Omega_M = 0.35 +/- 0.14. Combining our data with other results, we find a best fit for Omega_M and Omega_Lambda of 0.28 and 0.72, respectively. A number of possible systematic effects (dust, supernova evolution) thus far do not seem to eliminate the need for Omega_Lambda > 0. Recently, analyses of SNe Ia at z = 1.0-1.7 provide further support for current acceleration, and give tentative evidence for an early epoch of deceleration. The dynamical age of the Universe is estimated to be 13.1 +/- 1.5 Gyr. According to the most recent data sets, the SN Ia rate at z > 1 is several times greater than that at low redshifts, presumably because of higher star formation rates long ago. Moreover, the typical delay time from progenitor star formation to SNIa explosion appears to be substantial, ~3 Gyr. Current projects include the measurement of a few hundred SNe Ia at z = 0.2-0.8 to more accurately determine the equation-of-state parameter of the dark energy, w = P/(\rho c^2), whose value is now constrained by SNe Ia to be in the range -1.48 < w < -0.72 at 95% confidence.Comment: 39 pages, 17 figures, to be published in "White Dwarfs: Probes of Galactic Structure and Cosmology" ed. E. M. Sion, H. L. Shipman, and S. Vennes (Kluwer: Dordrecht). Part of the Astrophysics and Space Science Library Serie

    Automatic Calibration of Artificial Neural Networks for Zebrafish Collective Behaviours using a Quality Diversity Algorithm

    Full text link
    During the last two decades, various models have been proposed for fish collective motion. These models are mainly developed to decipher the biological mechanisms of social interaction between animals. They consider very simple homogeneous unbounded environments and it is not clear that they can simulate accurately the collective trajectories. Moreover when the models are more accurate, the question of their scalability to either larger groups or more elaborate environments remains open. This study deals with learning how to simulate realistic collective motion of collective of zebrafish, using real-world tracking data. The objective is to devise an agent-based model that can be implemented on an artificial robotic fish that can blend into a collective of real fish. We present a novel approach that uses Quality Diversity algorithms, a class of algorithms that emphasise exploration over pure optimisation. In particular, we use CVT-MAP-Elites, a variant of the state-of-the-art MAP-Elites algorithm for high dimensional search space. Results show that Quality Diversity algorithms not only outperform classic evolutionary reinforcement learning methods at the macroscopic level (i.e. group behaviour), but are also able to generate more realistic biomimetic behaviours at the microscopic level (i.e. individual behaviour).Comment: 8 pages, 4 figures, 1 tabl
    • …
    corecore