5,830 research outputs found

    Utilizing Deep Neural Networks for Brain–Computer Interface-Based Prosthesis Control

    Full text link
    Limb amputations affect a significant portion of the world’s population every year. The necessity for these operations can be associated with related health conditions or a traumatic event. Currently, prosthetic devices intended to alleviate the burden of amputation lack many of the premier features possessed by their biological counterparts. The foremost of these features are agility and tactile function. In an effort to address the former, researchers here investigate the fundamental connection between agile finger movement and brain signaling. In this study each subject was asked to move his or her right index finger in sync with a time-aligned finger movement demonstration while each movement was labeled and the subject’s brain waves were recorded via a single-channel electroencephalograph. This data was subsequently used to train and test a deep neural network in an effort to classify each subject’s intention to rest and intention to extend his or her right index finger. On average, the employed model yielded an accuracy of 63.3%, where the most predictable subject’s movements were classified with an accuracy of 70.5%

    Progress in thin film GaAs solar cells

    Get PDF
    Solar cells using polycrystalline films of gallium arsenid

    Young\u27s Double-Slit Interferometry within an Atom

    Get PDF
    An experiment is described which is an analog of Young\u27s double-slit interferometer using an atomic electron instead of light. Two phase-coherent laser pulses are used to excite a single electron into a state of the form of a pair of Rydberg wave packets that are initially on opposite sides of the orbit. The two wave packets propagate and spread until they completely overlap, then a third phase-coherent laser pulse probes the resulting fringe pattern. The relative phase of the two wave packets is varied so that the interference produces a single localized electron wave packet on one side of the orbit or the other

    Excitation of an Atomic Electron to a Coherent Superposition of Macroscopically Distinct States

    Get PDF
    An atomic electron is prepared in a state closely analogous to Schrödinger’s coherent superposition of “live cat” and “dead cat.” The electronic state is a coherent superposition of two spatially localized wave packets separated by approximately 0.4 mm at the opposite extremes of a Kepler orbit. State-selective ionization is used to verify that only every other atomic level is populated in the “cat state,” and a Ramsey fringe measurement is used to verify the coherence of the superposition

    Young\u27s Double-Slit Interferometry within an Atom

    Get PDF
    An experiment is described which is an analog of Young\u27s double-slit interferometer using an atomic electron instead of light. Two phase-coherent laser pulses are used to excite a single electron into a state of the form of a pair of Rydberg wave packets that are initially on opposite sides of the orbit. The two wave packets propagate and spread until they completely overlap, then a third phase-coherent laser pulse probes the resulting fringe pattern. The relative phase of the two wave packets is varied so that the interference produces a single localized electron wave packet on one side of the orbit or the other

    Measurement of Lande g factor of 5D5/2 state of BaII with a single trapped ion

    Full text link
    We present the first terrestrial measurement of the Lande g factor of the 5D5/2 state of singly ionized barium. Measurements were performed on single Doppler-cooled 138Ba+ ions in a linear Paul trap. A frequency-stabilized fiber laser with nominal wavelength 1.762 um was scanned across the 6S1/25D5/2 transition to spectroscopically resolve transitions between Zeeman sublevels of the ground and excited states. From the relative positions of the four narrow transitions observed at several different values for the applied magnetic field, we find a value of 1.2020+/-0.0005 for g of 5D5/2.Comment: 3 figure

    Does the Sun Shrink with Increasing Magnetic Activity?

    Get PDF
    We have analyzed the full set of SOHO/MDI f- and p-mode oscillation frequencies from 1996 to date in a search for evidence of solar radius evolution during the rising phase of the current activity cycle. Like Antia et al. (2000), we find that a significant fraction of the f-mode frequency changes scale with frequency; and that if these are interpreted in terms of a radius change, it implies a shrinking sun. Our inferred rate of shrinkage is about 1.5 km/y, which is somewhat smaller than found by Antia et al. We argue that this rate does not refer to the surface, but rather to a layer extending roughly from 4 to 8 Mm beneath the visible surface. The rate of shrinking may be accounted for by an increasing radial component of the rms random magnetic field at a rate that depends on its radial distribution. If it were uniform, the required field would be ~7 kG. However, if it were inwardly increasing, then a 1 kG field at 8 Mm would suffice. To assess contribution to the solar radius change arising above 4Mm, we analyzed the p-mode data. The evolution of the p-mode frequencies may be explained by a magnetic^M field growing with activity. The implications of the near-surface magnetic field changes depend on the anisotropy of the random magnetic field. If the field change is predominantly radial, then we infer an additional shrinking at a rate between 1.1-1.3 km/y at the photosphere. If on the other hand the increase is isotropic, we find a competing expansion at a rate of 2.3 km/y. In any case, variations in the sun's radius in the activity cycle are at the level of 10^{-5} or less, hence have a negligible contribution to the irradiance variations.Comment: 10 pages (ApJ preprint style), 4 figures; accepted for publication in Ap

    Dispersion of Klauder's temporally stable coherent states for the hydrogen atom

    Full text link
    We study the dispersion of the "temporally stable" coherent states for the hydrogen atom introduced by Klauder. These are states which under temporal evolution by the hydrogen atom Hamiltonian retain their coherence properties. We show that in the hydrogen atom such wave packets do not move quasi-classically; i.e., they do not follow with no or little dispersion the Keplerian orbits of the classical electron. The poor quantum-classical correspondence does not improve in the semiclassical limit.Comment: 6 pages, 2 figure
    corecore