4,798 research outputs found

    Symmetry breaking and unconventional charge ordering in single crystal Na2.7_{2.7}Ru4_4O9_9

    Get PDF
    The interplay of charge, spin, and lattice degrees of freedom in matter leads to various forms of ordered states through phase transitions. An important subclass of these phenomena of complex materials is charge ordering (CO), mainly driven by mixed-valence states. We discovered by combining the results of electrical resistivity (ρ\rho), specific heat, susceptibility χ\chi (\textit{T}), and single crystal x-ray diffraction (SC-XRD) that Na2.7_{2.7}Ru4_4O9_9 with the monoclinic tunnel type lattice (space group CC2/mm) exhibits an unconventional CO at room temperature while retaining metallicity. The temperature-dependent SC-XRD results show successive phase transitions with super-lattice reflections at \textbf{q}1_1=(0, 12\frac{1}{2}, 0) and \textbf{q}2_2=(0, 13\frac{1}{3}, 13\frac{1}{3}) below TC2T_{\textrm{C2}} (365 K) and only at \textbf{q}1_1=(0, 12\frac{1}{2}, 0) between TC2T_{\textrm{C2}} and TC1T_{\textrm{C1}} (630 K). We interpreted these as an evidence for the formation of an unconventional CO. It reveals a strong first-order phase transition in the electrical resistivity at TC2T_{\textrm{C2}} (cooling) = 345 K and TC2T_{\textrm{C2}} (heating) = 365 K. We argue that the origin of the phase transition is due to the localized 4dd Ru-electrons. The results of our finding reveal an unique example of Ru3+^{3+}/Ru4+^{4+} mixed valance heavy \textit{d}4^4 ions.Comment: 10 pages, 9 figure

    Magnetic-field-induced switching between ferroelectric phases in orthorhombic-distortion-controlled RRMnO3_{3}

    Full text link
    We have investigated the dielectric and magnetic properties of Eu0.595_{0.595}Y0.405_{0.405}MnO3_{3} withoutwithout the presence of the 4ff magnetic moments of the rare earth ions, and have found two ferroelectric phases with polarization along the aa and cc axes in a zero magnetic field. A magnetic field induced switching from one to the other ferroelectric phase took plase in which the direction of ferroelectric polarization changed from the a axis to the c axis by the application of magnetic fields parallel to the a axis. In contrast to the case of TbMnO3_{3}, in which the 4ff moments of Tb3+^{3+} ions play an important role in such a ferroelectric phase switching, the magnetic-field-induced switching between ferroelectric phases in Eu0.595_{0.595}Y0.405_{0.405}MnO3_{3} does not originate from the magnetic transition of the rare-earth 4ff moments, but from that of the Mn 3dd spins.Comment: 8 pages, 3 figures, RevTeX4, Proceedings of MMM 2005, to appear in J. Appl. Phy

    La subitización en tareas numéricas en niños con síndrome de down

    Get PDF
    Los niños con síndrome de Down manifiestan dificultades para realizar tareas de conteo (Abdelhameed y Porter, 2006) que les condiciona la adquisición de otras habilidades numéricas como la cardinalidad, la composición y la descomposición. En la investigación que realizamos con esta población se analiza una propuesta de enseñanza que fomenta la capacidad de subitizar con el fin de compensar sus dificultades en el conteo

    High-throughput and Full Automatic DBC-Module Screening Tester for High Power IGBT

    Get PDF
    We developed a high-throughput screening tester for DBC-module of IGBT. The tester realizes a new screening test with current distribution in addition to a conventional switching test. It consists of a power circuit, a replaceable test head, sensor array module and digitizer with LabVIEW program. Therefore, all kinds of DBC-modules can be screened by switching the test head. The tester acquires magnetic field signals and displays GO/NOGO judgment automatically after digital calibration and signal processing in 10 seconds. It is expected to be applied for screening in a production line and analysis in order to prevent the failure of power modules.ESREF 2015, 26th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, Oct 5-9, 2015, Centre de Congrès Pierre Baudis, Toulouse, Franc

    16-channnel Micro Magnetic Flux Sensor Array for IGBT Current Distribution Measurement

    Get PDF
    Current crowding of IGBT and power diode in a chip or among chips is a barrier to the realization of highly-reliable power module and power electronics system. Current crowding occurs because of the parasitic inductance, difference of chip characteristics or temperature imbalance among chips. Although current crowding among IGBT or power diode chips has been analysed on numerical simulations, no sensor with sufficiently high special resolution and fast measurement time has yet been demonstrated. Therefore, the author developed and demonstrated 16-channel flat sensitivity sensor array for IGBT current distribution measurement. The sensor array consists of tiny-scale film sensors with analog amps and shield case against noise. The array and digital calibration method will be applied for reliability analysis, designing and screening of IGBT modules.ESREF 2015, 26th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, Oct 5-9, 2015, Centre de Congrès Pierre Baudis, Toulouse, Franc

    Reactive Hall response

    Full text link
    The zero temperature Hall constant R_H, described by reactive (nondissipative) conductivities, is analyzed within linear response theory. It is found that in a certain limit, R_H is directly related to the density dependence of the Drude weight implying a simple picture for the change of sign of charge carriers in the vicinity of a Mott-Hubbard transition. This novel formulation is applied to the calculation of R_H in quasi-one dimensional and ladder prototype interacting electron systems.Comment: 4 pages, 3 Postscript figure

    Anomalous Coexistence of Ferroelectric Phases (PaP\parallel a and PcP\parallel c) in Orthorhombic Eu1y_{1-y}Yy_yMnO3_3 (y>0.5y>0.5) Crystals

    Full text link
    We have investigated the magnetic and dielectric properties of orthorhombic Eu1y_{1-y}Yy_yMnO3_3 (0y0.60\leq y\leq 0.6) single crystals without the presence of the 4ff magnetic moments of the rare-earth ions. In y0.2y\geq 0.2, the magnetic-structure driven ferroelectricity is observed. The ferroelectric transition temperature is steeply reducing with increasing yy. In y0.52y\geq 0.52, two ferroelectric phases (PaP\parallel a and PcP\parallel c) are coexistent at low temperatures. In these phases, ferroelectricity has different origin, which is evidenced by the distinctive poling-electric-field dependence of electric polarization. Namely, the electric polarization along the c axis (PcP_c) is easily saturated by a poling electric field, therefore PcP_c is caused by the bcbc spiral antiferromagnetic order. On the other hand, the electric polarization along the a axis (PaP_a) is probably attributed to the collinear EE-type antiferromagnetic order, because PaP_a is unsaturated even in a poling field of 10610^6 V/m.Comment: 10 pages, 4figures, to be published in Journal of the Physical Society of Japa

    Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states

    Full text link
    Jaynes' information theory formalism of statistical mechanics is applied to the stationary states of open, non-equilibrium systems. The key result is the construction of the probability distribution for the underlying microscopic phase space trajectories. Three consequences of this result are then derived : the fluctuation theorem, the principle of maximum entropy production, and the emergence of self-organized criticality for flux-driven systems in the slowly-driven limit. The accumulating empirical evidence for these results lends support to Jaynes' formalism as a common predictive framework for equilibrium and non-equilibrium statistical mechanics.Comment: 21 pages, 0 figures, minor modifications, version to appear in J. Phys. A. (2003

    The Effect of ff-dd Magnetic Coupling in Multiferroic RRMnO3_3 Crystals

    Full text link
    We have established detailed magnetoelectric phase diagrams of (Eu0.595_{0.595}Y0.405_{0.405})1x_{1-x}Tbx_xMnO3_3 (0x10 \le x \le 1) and (Eu,Y)1x_{1-x}Gdx_xMnO3_3 (0x0.690 \le x \le 0.69), whose average ionic radii of RR-site (RR: rare earth) cations are equal to that of Tb3+^{3+}, in order to reveal the effect of rare earth 4ff magnetic moments on the magnetoelectric properties. In spite of the same RR-site ionic radii, the magnetoelectric properties of the two systems are remarkably different from each other. A small amount of Tb substitution on RR sites (x0.2x \sim 0.2) totally destroys ferroelectric polarization along the a axis (PaP_a), and an increase in Tb concentration stabilizes the PcP_c phase. On the other hand, Gd substitution (x0.2x \sim 0.2) extinguishes the PcP_c phase, and slightly suppresses the PaP_a phase. These results demonstrate that the magnetoelectric properties of RRMnO3_3 strongly depend on the characteristics of the rare earth 4ff moments.Comment: 10 pages, 5 figures Submitted to Journal of the Physical Society of Japa

    Vortex Structure in Superconducting Stripe States

    Full text link
    The vortex structure in superconducting stripe states is studied according to the Bogoliubov-de Gennes theory on the two-dimensional Hubbard model with nearest-neighbor sites pairing interaction. The vortex is trapped at the outside region of the stripe line, where the superconductivity is weak. The superconducting coherence length along the stripe direction becomes long. There are no eminent low-energy electronic states even near the vortex core. These characters resemble the Josephson vortex in layered superconductors under a parallel field.Comment: LaTeX 5 pages (using jpsj macros) with 3 figure
    corecore