29 research outputs found

    Contemporary and future distributions of cobia, Rachycentron canadum

    Get PDF
    Climate change has influenced the distribution and phenology of marine species, globally. However, knowledge of the impacts of climate change is lacking for many species that support valuable recreational fisheries. Cobia (Rachycentron canadum) are the target of an important recreational fishery along the U.S. east coast that is currently the subject of a management controversy regarding allocation and stock structure. Further, the current and probable future distributions of this migratory species are unclear, further complicating decision-making. The objectives of this study are to better define the contemporary distribution of cobia along the U.S. east coast and to project potential shifts in distribution and phenology under future climate change scenarios

    Meteotsunamis Accompanying Tropical Cyclone Rainbands During Hurricane Harvey

    No full text
    Meteotsunami waves can be triggered by atmospheric disturbances accompanying tropical cyclone rainbands (TCRs) before, during, and long after a tropical cyclone (TC) makes landfall. Due to a paucity of high-resolution field data along open coasts during TCs, relatively little is known about the atmospheric forcing that generate and resonantly amplify these ocean waves, nor their coastal impact. This study links high-resolution field measurements of sea level and air pressure from Hurricane Harvey (2017) with a numerical model to assess the potential for meteotsunami generation by sudden changes in air pressure accompanying TCRs. Previous studies, through the use of idealized models, have suggested that wind is the dominant forcing mechanism for TCR-induced meteotsunami with negligible contributions from air pressure. Our model simulations show that large air pressure perturbations (∼1–3 mbar) can generate meteotsunamis that are similar in period (∼20 min) and amplitude (∼0.2 m) to surf zone observations. The measured air pressure disturbances were often short in wavelength, which necessitates a numerical model with high temporal and spatial resolution to simulate meteotsunami triggered by this mechanism. Sensitivity analysis indicates that air pressure forcing can produce meteotsunami with amplitudes O(0.5 m) and large spatial extents, but model results are sensitive to atmospheric factors, including model uncertainties (length, forward translation speed, and trajectory of the air pressure disturbance), as well as oceanographic factors (storm surge). The present study provides observational and numerical evidence that suggest that air pressure perturbations likely play a larger role in meteotsunami generation by TCRs than previously identified.Environmental Fluid Mechanic
    corecore