28 research outputs found
Hand washing with soap and water together with behavioural recommendations prevents infections in common work environment: an open cluster-randomized trial
<p>Abstract</p> <p>Background</p> <p>Hand hygiene is considered as an important means of infection control. We explored whether guided hand hygiene together with transmission-limiting behaviour reduces infection episodes and lost days of work in a common work environment in an open cluster-randomized 3-arm intervention trial.</p> <p>Methods</p> <p>A total of 21 clusters (683 persons) were randomized to implement hand hygiene with soap and water (257 persons), with alcohol-based hand rub (202 persons), or to serve as a control (224 persons). Participants in both intervention arms also received standardized instructions on how to limit the transmission of infections. The intervention period (16 months) included the emergence of the 2009 influenza pandemic and the subsequent national hand hygiene campaign influencing also the control arm.</p> <p>Results</p> <p>In the total follow-up period there was a 6.7% reduction of infection episodes in the soap-and water arm (p = 0.04). Before the onset of the anti-pandemic campaign, a statistically significant (p = 0.002) difference in the mean occurrence of infection episodes was observed between the control (6.0 per year) and the soap-and-water arm (5.0 per year) but not between the control and the alcohol-rub arm (5.6 per year). Neither intervention had a decreasing effect on absence from work.</p> <p>Conclusions</p> <p>We conclude that intensified hand hygiene using water and soap together with behavioural recommendations can reduce the occurrence of self-reported acute illnesses in common work environment. Surprisingly, the occurrence of reported sick leaves also increased in the soap-and water-arm.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00981877">NCT00981877</a></p> <p>Source of funding</p> <p>The Finnish Work Environment Fund and the National Institute for Health and Welfare.</p
Combining transcriptional profiling and genetic linkage analysis to uncover gene networks operating in hematopoietic stem cells and their progeny
Stem cells are unique in that they possess both the capacity to self-renew and thereby maintain their original pool as well as the capacity to differentiate into mature cells. In the past number of years, transcriptional profiling of enriched stem cell populations has been extensively performed in an attempt to identify a universal stem cell gene expression signature. While stem-cell-specific transcripts were identified in each case, this approach has thus far been insufficient to identify a universal group of core “stemness” genes ultimately responsible for self-renewal and multipotency. Similarly, in the hematopoietic system, comparisons of transcriptional profiles between different hematopoietic cell stages have had limited success in revealing core genes ultimately responsible for the initiation of differentiation and lineage specification. Here, we propose that the combined use of transcriptional profiling and genetic linkage analysis, an approach called “genetical genomics”, can be a valuable tool to assist in the identification of genes and gene networks that specify “stemness” and cell fate decisions. We review past studies of hematopoietic cells that utilized transcriptional profiling and/or genetic linkage analysis, and discuss several potential future applications of genetical genomics
Efficacy of two antiseptic regimens on skin colonization of insertion sites for two different catheter types: a randomized, clinical trial
PURPOSE: Catheter-related bloodstream infections affect patients in surgical and intensive care settings worldwide, causing complications, aggravation of existing symptoms and increased length of stay. The trial aimed at comparing two registered skin antiseptics with respect to their residual and therefore infection-preventing effects. METHODS: In a parallel, monocentric, prospective, triple-blind, randomized trial the difference in bacterial recolonization of catheter skin sites in central venous (CVC) and epidural catheters (EC) was investigated by comparing two alcoholic-based skin disinfectants. Patients receiving planned surgeries or intensive care were eligible for the trial. Those in the trial group received skin disinfection with the additive octenidine dihydrochloride (OCT) (n = 51), those in the control group were treated with benzalkonium chloride as additive (BAC) (n = 59) prior to catheter insertion. Randomization was carried out by assigning patients to groups week-wise. Endpoints of the investigation were skin colonization of the catheter site counted in colony forming units per swab at three time points: (1) prior to catheter insertion, on untreated skin; (2) directly after catheter insertion, prior to sterile coverage; (3) 48 h after catheter insertion. The hypothesis was tested by a Wilcoxon test with a two-sided alpha = 5 %. RESULTS: From second to third swab, recolonization of the catheter-surrounding skin was significantly lower in the trial group for both sorts of catheters: delta 2–3 OCT group: 0.72 (95 % CI: 0.42; 1.02); delta 2–3 BAC group: 1.97 (95 % CI: 1.45; 2.50); p < 0.001. None of the patients enrolled developed a catheter-related blood stream infection (CRBSI) during follow-up. CONCLUSIONS: Previous studies have shown that skin colonization is strongly associated with the occurrence of CRBSI. This randomized controlled trial supports the observations made in previous trials that octenidine dihydrochloride in disinfectants is more effective than agents containing other additives with regard to skin recolonization surrounding CVC and EC insertion sites. Therefore, it is likely to also reduce the risk of CRBSI in these patient groups. The trial was approved by the North Rhine Medical Association in July 2014 (application-no.: 2014222)