2,611 research outputs found

    Identification of Nonlinear Normal Modes of Engineering Structures under Broadband Forcing

    Get PDF
    The objective of the present paper is to develop a two-step methodology integrating system identification and numerical continuation for the experimental extraction of nonlinear normal modes (NNMs) under broadband forcing. The first step processes acquired input and output data to derive an experimental state-space model of the structure. The second step converts this state-space model into a model in modal space from which NNMs are computed using shooting and pseudo-arclength continuation. The method is demonstrated using noisy synthetic data simulated on a cantilever beam with a hardening-softening nonlinearity at its free end.Comment: Journal pape

    On Characterizing the Data Movement Complexity of Computational DAGs for Parallel Execution

    Get PDF
    Technology trends are making the cost of data movement increasingly dominant, both in terms of energy and time, over the cost of performing arithmetic operations in computer systems. The fundamental ratio of aggregate data movement bandwidth to the total computational power (also referred to the machine balance parameter) in parallel computer systems is decreasing. It is there- fore of considerable importance to characterize the inherent data movement requirements of parallel algorithms, so that the minimal architectural balance parameters required to support it on future systems can be well understood. In this paper, we develop an extension of the well-known red-blue pebble game to develop lower bounds on the data movement complexity for the parallel execution of computational directed acyclic graphs (CDAGs) on parallel systems. We model multi-node multi-core parallel systems, with the total physical memory distributed across the nodes (that are connected through some interconnection network) and in a multi-level shared cache hierarchy for processors within a node. We also develop new techniques for lower bound characterization of non-homogeneous CDAGs. We demonstrate the use of the methodology by analyzing the CDAGs of several numerical algorithms, to develop lower bounds on data movement for their parallel execution

    Superconductivity in domains with corners

    Full text link
    We study the two-dimensional Ginzburg-Landau functional in a domain with corners for exterior magnetic field strengths near the critical field where the transition from the superconducting to the normal state occurs. We discuss and clarify the definition of this field and obtain a complete asymptotic expansion for it in the large κ\kappa regime. Furthermore, we discuss nucleation of superconductivity at the boundary

    Origin of Possible Contamination Introduced by a Turbomolecular Pumping System

    Get PDF
    Turbomolecular pumping groups are widely used in accelerators for the pre-evacuation and during the bake-out of the vacuum system. A major requirement for these groups, apart from pumping speed considerations, is the cleanliness of the vacuum produced. In an attempt to clarify this question, a bakeable low-pressure vacuum system has been constructed to allow the direct comparison of the contamination introduced by a turbomolecular pump and by an ideally clean cryopump. This contamination has been checked by the quantitative analysis of the residual gas as well as of the gases desorbed from surfaces under electron bombardment. Contamination by the rotary pump oil is only apparent below 40% of the turbomolecular pump nominal rotation speed. When the pump is stopped, the system is contaminated by heavy hydrocarbons which can be eliminated by a 300°C vacuum bake out

    Beyond Reuse Distance Analysis: Dynamic Analysis for Characterization of Data Locality Potential

    Get PDF
    Emerging computer architectures will feature drastically decreased flops/byte (ratio of peak processing rate to memory bandwidth) as highlighted by recent studies on Exascale architectural trends. Further, flops are getting cheaper while the energy cost of data movement is increasingly dominant. The understanding and characterization of data locality properties of computations is critical in order to guide efforts to enhance data locality. Reuse distance analysis of memory address traces is a valuable tool to perform data locality characterization of programs. A single reuse distance analysis can be used to estimate the number of cache misses in a fully associative LRU cache of any size, thereby providing estimates on the minimum bandwidth requirements at different levels of the memory hierarchy to avoid being bandwidth bound. However, such an analysis only holds for the particular execution order that produced the trace. It cannot estimate potential improvement in data locality through dependence preserving transformations that change the execution schedule of the operations in the computation. In this article, we develop a novel dynamic analysis approach to characterize the inherent locality properties of a computation and thereby assess the potential for data locality enhancement via dependence preserving transformations. The execution trace of a code is analyzed to extract a computational directed acyclic graph (CDAG) of the data dependences. The CDAG is then partitioned into convex subsets, and the convex partitioning is used to reorder the operations in the execution trace to enhance data locality. The approach enables us to go beyond reuse distance analysis of a single specific order of execution of the operations of a computation in characterization of its data locality properties. It can serve a valuable role in identifying promising code regions for manual transformation, as well as assessing the effectiveness of compiler transformations for data locality enhancement. We demonstrate the effectiveness of the approach using a number of benchmarks, including case studies where the potential shown by the analysis is exploited to achieve lower data movement costs and better performance.Comment: Transaction on Architecture and Code Optimization (2014

    Variational estimates for the effective response and field statistics in thermoelastic composites with intra-phase property fluctuations

    No full text
    International audienceIn this work, variational estimates are provided for the macroscopic response, as well as for the first and second moments of the stress and strain fields, in thermoelastic composites with non-uniform distributions of the thermal stress and elastic moduli in the constituent phases. These estimates are obtained in terms of a 'comparison composite' with uniform phase properties depending on the first and second moments of a certain combination of the given intra-phase thermal stresses and modulus field distributions. Under certain hypotheses, these estimates can be shown to lead to upper and lower bounds for the free energy of the composite, which reduce to standard results when the intra-phase fluctuations vanish. An illustrative application is given for rigidly reinforced composites with a non-uniform distribution of the thermal stress in the matrix phase

    Projet pilote "Mali-Sud" bas-fond de Kambo : rapport de synthèse : hydrologie-hydrogéologie

    Get PDF
    L'objectif de l'étude faite dans ce rapport sur le projet pilote de Kambo vise à quantifier le bilan hydrologique d'un bas-fond jugé représentatif de la région sur des critères morphologiques, pédologiques et climatiques en vue d'une meilleure mise en valeur agricole. La mise en évidence des paramètres déterminants du processus hydraulique doit permettre un avis objectif sur l'efficacité de l'aménagement du bas fond étudié et la mise au point d'un outil de diagnostic et d'aide à la décision pour l'aménagement des autres bas fonds de la régio
    corecore