3 research outputs found

    Phylogenetic Relationships and Evolutionary Patterns of the Order Collodaria (Radiolaria)

    Get PDF
    Collodaria are the only group of Radiolaria that has a colonial lifestyle. This group is potentially the most important plankton in the oligotrophic ocean because of its large biomass and the high primary productivity associated with the numerous symbionts inside a cell or colony. The evolution of Collodaria could thus be related to the changes in paleo-productivity that have affected organic carbon fixation in the oligotrophic ocean. However, the fossil record of Collodaria is insufficient to trace their abundance through geological time, because most collodarians do not have silicified shells. Recently, molecular phylogeny based on nuclear small sub-unit ribosomal DNA (SSU rDNA) confirmed Collodaria to be one of five orders of Radiolaria, though the relationship among collodarians is still unresolved because of inadequate taxonomic sampling. Our phylogenetic analysis has revealed four novel collodarian sequences, on the basis of which collodarians can be divided into four clades that correspond to taxonomic grouping at the family level: Thalassicollidae, Collozoidae, Collosphaeridae, and Collophidae. Comparison of the results of our phylogenetic analyses with the morphological characteristics of each collodarian family suggests that the first ancestral collodarians had a solitary lifestyle and left no silica deposits. The timing of events estimated from molecular divergence calculations indicates that naked collodarian lineages first appeared around 45.6 million years (Ma) ago, coincident with the diversification of diatoms in the pelagic oceans. Colonial collodarians appeared after the formation of the present ocean circulation system and the development of oligotrophic conditions in the equatorial Pacific (ca. 33.4 Ma ago). The divergence of colonial collodarians probably caused a shift in the efficiency of primary production during this period

    Radiolaria and Phaeodaria

    No full text
    Polycystina (~400–800 living species and several thousand extinct forms) and Phaeodaria (~400–500 living species) are exclusively marine, open-ocean planktonic protists, most of which possess elaborate siliceous skeletons. The cytoplasm is divided into an internal part (endoplasm) separated from the external, more vacuolated one (ectoplasm) by a perforated membrane – the central capsule. The Polycystina protrude long and slender cytoplasmic projections (axopodia) supported internally by a rigid central rod (axoneme); while the Phaeodria have anetwork ofperipheral finely interconnectedpseudopodia.Afew Polycystina are colonial, but most, as well as all Phaeodaria, are solitary, around 40 μm to almost 2 mm in size. Most polycystine species peak in abundance between 0 and 100 m, whereasphaeodarianstendtolivedeeper,oftenbelow300m.Polycystineshavea rich fossil record dating from the Cambrian and are important for stratigraphic, paleoecologic, and evolutionary studies. The world-wide biogeography and diversity of radiolarians is chiefly governed by water temperature. Radiolarian prey includes bacteria, algae, protozoa, and microinvertebrates. Many surfacedwelling species of Polycystina possess symbiotic algae and photosynthetic cyanobacteria that provide nourishment to the host. Some colonial radiolaria reproduce by binary fission of the central capsules. Sexual reproduction of polycystines or Phaeodaria has not been confirmed, but the release of motile swarmers, likely gametes, has been widely documented. In species with a radial symmetry (Spumellaria) shell-growth is centrifugal, whereas in the Nassellaria the internal cephalic elements and the cephalis appear first. Individual longevity is estimated to range between 2 and 3 weeks and 1–2 months

    Freshwater Mollusca of the Circumpolar Arctic: a review on their taxonomy, diversity and biogeography

    No full text
    corecore