25 research outputs found

    An iron-based beverage, HydroFerrate fluid (MRN-100), alleviates oxidative stress in murine lymphocytes in vitro

    Get PDF
    BackgroundSeveral studies have examined the correlation between iron oxidation and H2O2 degradation. The present study was carried out to examine the protective effects of MRN-100 against stress-induced apoptosis in murine splenic cells in vitro. MRN-100, or HydroFerrate fluid, is an iron-based beverage composed of bivalent and trivalent ferrates.MethodsSplenic lymphocytes from mice were cultured in the presence or absence of MRN-100 for 2 hrs and were subsequently exposed to hydrogen peroxide (H2O2) at a concentration of 25 μM for 14 hrs. Percent cell death was examined by flow cytometry and trypan blue exclusion. The effect of MRN-100 on Bcl-2 and Bax protein levels was determined by Western blot.ResultsResults show, as expected, that culture of splenic cells with H2O2 alone results in a significant increase in cell death (apoptosis) as compared to control (CM) cells. In contrast, pre-treatment of cells with MRN-100 followed by H2O2 treatment results in significantly reduced levels of apoptosis. In addition, MRN-100 partially prevents H2O2-induced down-regulation of the anti-apoptotic molecule Bcl-2 and upregulation of the pro-apoptotic molecule Bax.ConclusionOur findings suggest that MRN-100 may offer a protective effect against oxidative stress-induced apoptosis in lymphocytes

    Effects of 4-Hydroxy-2-Nonenal, a Major Lipid Peroxidation-Derived Aldehyde, and N-Acetylcysteine on the Cyclooxygenase-2 Expression in Human Uterine Myometrium.

    Full text link
    Background: Chorioamnionitis is one of the important causes of preterm labor. Preterm labor with chorioamnionitis is associated with oxidative stress. We reported that 4-hydroxy-2-nonenal (4-HNE), a major end product of oxidative fatty acid metabolism, is accumulated in the placenta with chorioamnionitis. The aim of this study was to confirm the effect of 4-HNE on cyclooxygenase-2 (COX-2) and prostaglandin (PG) induction in the uterine myometrial tissues. We also examined the effect of N-acetylcysteine (NAC) on 4-HNE-induced COX-2 expression. Methods: Uterine myometrial tissues were obtained from 5 patients. One of them underwent elective cesarean section without labor, and 4 of them underwent hysterectomy because of placental previa or atonic bleeding. We stimulated the uterine myometrial tissues with 4-HNE. In addition, the tissues were pretreated with NAC before 4-HNE treatment. The expression of COX-2 mRNA was observed by real-time PCR. PGE2 and prostacyclin release into the supernatants of the tissue cultures was measured by ELISA. Results: 4-HNE induced the COX-2 mRNA expression and PGE2 production in the uterine myometrial tissue culture in a dose-dependent and time-dependent manner. NAC inhibited 4-HNE-induced COX-2 expression. Conclusion: 4-HNE may play an important role in preterm labor. NAC might be protective against preterm labor under oxidative stress
    corecore