45 research outputs found

    Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis.

    Get PDF
    BACKGROUND: Gastrointestinal mucosal injury (mucositis), commonly affecting the oral cavity, is a clinically significant yet incompletely understood complication of cancer chemotherapy. Although antineoplastic cytotoxicity constitutes the primary injury trigger, the interaction of oral microbial commensals with mucosal tissues could modify the response. It is not clear, however, whether chemotherapy and its associated treatments affect oral microbial communities disrupting the homeostatic balance between resident microorganisms and the adjacent mucosa and if such alterations are associated with mucositis. To gain knowledge on the pathophysiology of oral mucositis, 49 subjects receiving 5-fluorouracil (5-FU) or doxorubicin-based chemotherapy were evaluated longitudinally during one cycle, assessing clinical outcomes, bacterial and fungal oral microbiome changes, and epithelial transcriptome responses. As a control for microbiome stability, 30 non-cancer subjects were longitudinally assessed. Through complementary in vitro assays, we also evaluated the antibacterial potential of 5-FU on oral microorganisms and the interaction of commensals with oral epithelial tissues. RESULTS: Oral mucositis severity was associated with 5-FU, increased salivary flow, and higher oral granulocyte counts. The oral bacteriome was disrupted during chemotherapy and while antibiotic and acid inhibitor intake contributed to these changes, bacteriome disruptions were also correlated with antineoplastics and independently and strongly associated with oral mucositis severity. Mucositis-associated bacteriome shifts included depletion of common health-associated commensals from the genera Streptococcus, Actinomyces, Gemella, Granulicatella, and Veillonella and enrichment of Gram-negative bacteria such as Fusobacterium nucleatum and Prevotella oris. Shifts could not be explained by a direct antibacterial effect of 5-FU, but rather resembled the inflammation-associated dysbiotic shifts seen in other oral conditions. Epithelial transcriptional responses during chemotherapy included upregulation of genes involved in innate immunity and apoptosis. Using a multilayer epithelial construct, we show mucositis-associated dysbiotic shifts may contribute to aggravate mucosal damage since the mucositis-depleted Streptococcus salivarius was tolerated as a commensal, while the mucositis-enriched F. nucleatum displayed pro-inflammatory and pro-apoptotic capacity. CONCLUSIONS: Altogether, our work reveals that chemotherapy-induced oral mucositis is associated with bacterial dysbiosis and demonstrates the potential for dysbiotic shifts to aggravate antineoplastic-induced epithelial injury. These findings suggest that control of oral bacterial dysbiosis could represent a novel preventive approach to ameliorate oral mucositis

    Omics-based molecular techniques in oral pathology centred cancer: Prospect and challenges in Africa

    Get PDF
    : The completion of the human genome project and the accomplished milestones in the human proteome project; as well as the progress made so far in computational bioinformatics and “big data” processing have contributed immensely to individualized/personalized medicine in the developed world.At the dawn of precision medicine, various omics-based therapies and bioengineering can now be applied accurately for the diagnosis, prognosis, treatment, and risk stratifcation of cancer in a manner that was hitherto not thought possible. The widespread introduction of genomics and other omics-based approaches into the postgraduate training curriculum of diverse medical and dental specialties, including pathology has improved the profciency of practitioners in the use of novel molecular signatures in patient management. In addition, intricate details about disease disparity among diferent human populations are beginning to emerge. This would facilitate the use of tailor-made novel theranostic methods based on emerging molecular evidences

    Modeling Normal and Dysbiotic Subgingival Microbiomes: Effect of Nutrients

    No full text
    Screening for microbiome modulators requires availability of a high-throughput in vitro model that replicates subgingival dysbiosis and normobiosis, with a tool to measure microbial dysbiosis. Here, we tested various formulations to grow health- and periodontitis-associated subgingival microbiomes in parallel, and we describe a new subgingival dysbiosis index. Subgingival plaque samples pooled from 5 healthy subjects and, separately, 5 subjects with periodontitis were used to inoculate a Calgary Biofilm Device containing saliva-conditioned, hydroxyapatite-coated pegs. Microbiomes were grown for 7 d on either nutrient-rich media—including a modification of SHI medium, brain-heart infusion (BHI) supplemented with hemin and vitamin K, and a blend of SHI and BHI, each at 3 sucrose concentrations (0%, 0.05% and 0.1%)—or nutrient-limited media (saliva with 5%, 10%, or 20% inactivated human serum). The microbiomes were assessed for biomass, viability, and 16S rRNA profiles. In addition to richness and diversity, a dysbiosis index was calculated as the ratio of the sum of relative abundances of disease-associated species to that of health-associated species. The supplemented BHI and blend of SHI and BHI resulted in the highest biomass, whereas saliva-serum maximized viability. Distinct groups of bacteria were enriched in the different media. Regardless of medium type, the periodontitis-derived microbiomes showed higher species richness and alpha diversity and clustered with their inoculum separate from the health-derived microbiomes. Microbiomes grown in saliva-serum showed the highest species richness and the highest similarity to the clinical inocula in both health and disease. However, inclusion of serum reduced alpha diversity and increased dysbiosis in healthy microbiomes in a dose-dependent manner, mainly due to overenrichment of Porphyromonas species. The modification of SHI stood second in terms of species richness and diversity but resulted in low biomass and viability and significantly worsened dysbiosis in the periodontitis-derived microbiomes. Overall, saliva with 5% human serum was optimal for replicating subgingival microbiomes from health and disease
    corecore