55 research outputs found

    Novel PDE4 inhibitors derived from Chinese medicine Forsythia

    Get PDF
    Cyclic adenosine monophosphate (cAMP) is a crucial intracellular second messenger molecule that converts extracellular molecules to intracellular signal transduction pathways generating cell- and stimulus-specific effects. Importantly, specific phosphodiesterase (PDE) subtypes control the amplitude and duration of cAMP-induced physiological processes and are therefore a prominent pharmacological target currently used in a variety of fields. Here we tested the extracts from traditional Chinese medicine, Forsythia suspense seeds, which have been used for more than 2000 years to relieve respiratory symptoms. Using structural-functional analysis we found its major lignin, Forsynthin, acted as an immunosuppressant by inhibiting PDE4 in inflammatory and immune cell. Moreover, several novel, selective small molecule derivatives of Forsythin were tested in vitro and in murine models of viral and bacterial pneumonia, sepsis and cytokine-driven systemic inflammation. Thus, pharmacological targeting of PDE4 may be a promising strategy for immune-related disorders characterized by amplified host inflammatory response

    The role of ALOX5AP, LTA4H and LTB4R polymorphisms in determining baseline lung function and COPD susceptibility in UK smokers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously shown evidence that polymorphisms within genes controlling leukotriene B<sub>4 </sub>(LTB<sub>4</sub>) production (<it>ALOX5AP </it>and <it>LTA4H</it>) are associated with asthma susceptibility in children. Evidence also suggests a potential role of LTB<sub>4 </sub>in COPD disease mechanisms including recruitment of neutrophils to the lung. The aim of the current study was to see if these SNPs and those spanning the receptor genes for LTB<sub>4 </sub>(<it>LTB4R1 </it>and <it>LTB4R2</it>) influence baseline lung function and COPD susceptibility/severity in smokers.</p> <p>Methods</p> <p>Eight <it>ALOX5AP</it>, six <it>LTA4H </it>and six <it>LTB4R </it>single nucleotide polymorphisms (SNPs) were genotyped in a UK Smoking Cohort (n = 992). Association with baseline lung function (FEV<sub>1 </sub>and FEV<sub>1</sub>/FVC ratio) was determined by linear regression. Logistic regression was used to compare smoking controls (n = 176) with spirometry-defined COPD cases (n = 599) and to more severe COPD cases (GOLD stage 3 and 4, n = 389).</p> <p>Results</p> <p>No association with <it>ALOX5AP</it>, <it>LTA4H </it>or <it>LTB4R </it>survived correction for multiple testing. However, we showed modest association with <it>LTA4H </it>rs1978331C (intron 11) with increased FEV<sub>1 </sub>(p = 0.029) and with increased FEV<sub>1</sub>/FVC ratio (p = 0.020).</p> <p>Conclusions</p> <p>These data suggest that polymorphisms spanning <it>ALOX5AP</it>, <it>LTA4H </it>and the <it>LTB4R </it>locus are not major determinants of baseline lung function in smokers, but provide tentative evidence for <it>LTA4H </it>rs1978331C (intron 11) in determining baseline FEV<sub>1 </sub>and FEV<sub>1</sub>/FVC ratio in Caucasian Smokers in addition to our previously identified role in asthma susceptibility.</p

    The development of novel LTA4H modulators to selectively target LTB4 generation

    Get PDF
    The pro-inflammatory mediator leukotriene B4 (LTB4) is implicated in the pathologies of an array of diseases and thus represents an attractive therapeutic target. The enzyme leukotriene A4 hydrolase (LTA4H) catalyses the distal step in LTB4 synthesis and hence inhibitors of this enzyme have been actively pursued. Despite potent LTA4H inhibitors entering clinical trials all have failed to show efficacy. We recently identified a secondary anti-inflammatory role for LTA4H in degrading the neutrophil chemoattractant Pro-Gly-Pro (PGP) and rationalized that the failure of conventional LTA4H inhibitors may be that they inadvertently prevented PGP degradation. We demonstrate that these inhibitors do indeed fail to discriminate between the dual activities of LTA4H, and enable PGP accumulation in mice. Accordingly, we have developed novel compounds that potently inhibit LTB4 generation whilst leaving PGP degradation unperturbed. These novel compounds could represent a safer and superior class of LTA4H inhibitors for translation into the clinic

    Chlamydophila pneumoniae induces a sustained airway hyperresponsiveness and inflammation in mice

    Get PDF
    Background: It has been reported that Chlamydophila (C.) pneumoniae is involved in the initiation and promotion of asthma and chronic obstructive pulmonary diseases (COPD). Surprisingly, the effect of C. pneumoniae on airway function has never been investigated.Methods: In this study, mice were inoculated intranasally with C. pneumoniae (strain AR39) on day 0 and experiments were performed on day 2, 7, 14 and 21.Results: We found that from day 7, C. pneumoniae infection causes both a sustained airway hyperresponsiveness and an inflammation. Interferon-γ (IFN-γ) and macrophage inflammatory chemokine-2 (MIP-2) levels in bronchoalveolar lavage (BAL)-fluid were increased on all experimental days with exception of day 7 where MIP-2 concentrations dropped to control levels. In contrast, tumor necrosis factor-α (TNF-α) levels were only increased on day 7. From day 7 to 21 epithelial damage and secretory cell hypertrophy was observed. It is suggested that, the inflammatory cells/mediators, the epithelial damage and secretory cell hypertrophy contribute to initiation of airway hyperresponsiveness.Conclusion: Our study demonstrates for the first time that C. pneumoniae infection can modify bronchial responsiveness. This has clinical implications, since additional changes in airway responsiveness and inflammation-status induced by this bacterium may worsen and/or provoke breathlessness in asthma and COPD

    Cigarette smoke induces β2-integrin-dependent neutrophil migration across human endothelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoking induces peripheral inflammatory responses in all smokers and is the major risk factor for neutrophilic lung disease such as chronic obstructive pulmonary disease. The aim of this study was to investigate the effect of cigarette smoke on neutrophil migration and on β<sub>2</sub>-integrin activation and function in neutrophilic transmigration through endothelium.</p> <p>Methods and results</p> <p>Utilizing freshly isolated human PMNs, the effect of cigarette smoke on migration and β<sub>2</sub>-integrin activation and function in neutrophilic transmigration was studied. In this report, we demonstrated that cigarette smoke extract (CSE) dose dependently induced migration of neutrophils <it>in vitro</it>. Moreover, CSE promoted neutrophil adherence to fibrinogen. Using functional blocking antibodies against CD11b and CD18, it was demonstrated that Mac-1 (CD11b/CD18) is responsible for the cigarette smoke-induced firm adhesion of neutrophils to fibrinogen. Furthermore, neutrophils transmigrated through endothelium by cigarette smoke due to the activation of β<sub>2</sub>-integrins, since pre-incubation of neutrophils with functional blocking antibodies against CD11b and CD18 attenuated this transmigration.</p> <p>Conclusion</p> <p>This is the first study to describe that cigarette smoke extract induces a direct migratory effect on neutrophils and that CSE is an activator of β<sub>2</sub>-integrins on the cell surface. Blocking this activation of β<sub>2</sub>-integrins might be an important target in cigarette smoke induced neutrophilic diseases.</p

    Loss of Adenomatous polyposis coli function renders intestinal epithelial cells resistant to the cytokine IL-22

    Get PDF
    Interleukin-22 (IL-22) is a critical immune defence cytokine that maintains intestinal homeostasis and promotes wound healing and tissue regeneration, which can support the growth of colorectal tumours. Mutations in the adenomatous polyposis coli gene (Apc) are a major driver of familial colorectal cancers (CRCs). How IL-22 contributes to APC-mediated tumorigenesis is poorly understood. To investigate IL-22 signalling in wild-type (WT) and APC-mutant cells, we performed RNA sequencing (RNAseq) of IL-22-treated murine small intestinal epithelial organoids. In WT epithelia, antimicrobial defence and cellular stress response pathways were most strongly induced by IL-22. Surprisingly, although IL-22 activates signal transducer and activator of transcription 3 (STAT3) in APC-mutant cells, STAT3 target genes were not induced. Our analyses revealed that ApcMin/Min cells are resistant to IL-22 due to reduced expression of the IL-22 receptor, and increased expression of inhibitors of STAT3, particularly histone deacetylases (HDACs). We further show that IL-22 increases DNA damage and genomic instability, which can accelerate cellular transition from heterozygosity (ApcMin/+) to homozygosity (ApcMin/Min) to drive tumour formation. Our data reveal an unexpected role for IL-22 in promoting early tumorigenesis while excluding a function for IL-22 in transformed epithelial cells
    • …
    corecore