23 research outputs found
Sleep-disordered breathing-do we have to change gears in heart failure?
The majority of patients with heart failure have sleep-disordered breathing (SDB)-with central (rather than obstructive) sleep apnoea becoming the predominant form in those with more severe disease. Cyclical apnoeas and hypopnoeas are associated with sleep disturbance, hypoxaemia, haemodynamic changes, and sympathetic activation. Such patients have a worse prognosis than those without SDB. Mask-based therapies of positive airway pressure targeted at SDB can improve measures of sleep quality and partially normalise the sleep and respiratory physiology, but recent randomised trials of cardiovascular outcomes in central sleep apnoea have been neutral or suggested the possibility of harm, likely from increased sudden death. Further randomised outcome studies (with cardiovascular mortality and hospitalisation endpoints) are required to determine whether mask-based treatment for SDB is appropriate for patients with chronic systolic heart failure and obstructive sleep apnoea, for those with heart failure with preserved ejection fraction, and for those with decompensated heart failure. New therapies for sleep apnoea-such as implantable phrenic nerve stimulators-also require robust assessment. No longer can the surrogate endpoints of improvement in respiratory and sleep metrics be taken as adequate therapeutic outcome measures in patients with heart failure and sleep apnoea
SPARC 2018 Internationalisation and collaboration : Salford postgraduate annual research conference book of abstracts
Welcome to the Book of Abstracts for the 2018 SPARC conference. This year we not only celebrate the work of our PGRs but also the launch of our Doctoral School, which makes this year’s conference extra special. Once again we have received a tremendous contribution from our postgraduate research community; with over 100 presenters, the conference truly showcases a vibrant PGR community at Salford. These abstracts provide a taster of the research strengths of their works, and provide delegates with a reference point for networking and initiating critical debate. With such wide-ranging topics being showcased, we encourage you to take up this great opportunity to engage with researchers working in different subject areas from your own. To meet global challenges, high impact research inevitably requires interdisciplinary collaboration. This is recognised by all major research funders. Therefore engaging with the work of others and forging collaborations across subject areas is an essential skill for the next generation of researchers
New insights into the synergism of nucleoside analogs with radiotherapy
Nucleoside analogs have been frequently used in combination with radiotherapy in the clinical setting, as it has long been understood that inhibition of DNA repair pathways is an important means by which many nucleoside analogs synergize. Recent advances in our understanding of the structure and function of deoxycytidine kinase (dCK), a critical enzyme required for the anti-tumor activity for many nucleoside analogs, have clarified the mechanistic role this kinase plays in chemo- and radio-sensitization. A heretofore unrecognized role of dCK in the DNA damage response and cell cycle machinery has helped explain the synergistic effect of these agents with radiotherapy. Since most currently employed nucleoside analogs are primarily activated by dCK, these findings lend fresh impetus to efforts focused on profiling and modulating dCK expression and activity in tumors. In this review we will briefly review the pharmacology and biochemistry of the major nucleoside analogs in clinical use that are activated by dCK. This will be followed by discussions of recent advances in our understanding of dCK activation via post-translational modifications in response to radiation and current strategies aimed at enhancing this activity in cancer cells
Negative Regulation of Endogenous Stem Cells in Sensory Neuroepithelia: Implications for Neurotherapeutics
Stem cell therapies to treat central nervous system (CNS) injuries and diseases face many obstacles, one of which is the fact that the adult CNS often presents an environment hostile to the development and differentiation of neural stem and progenitor cells. Close examination of two regions of the nervous system – the olfactory epithelium (OE), which regenerates, and the neural retina, which does not – have helped identify endogenous signals, made by differentiated neurons, which act to inhibit neurogenesis by stem/progenitor cells within these tissues. In this chapter, we provide background information on these systems and their neurogenic signaling systems, with the goal of providing insight into how manipulation of endogenous signaling molecules may enhance the efficacy of stem cell neurotherapeutics
Selenium-binding protein 1 as a tumor suppressor and a prognostic indicator of clinical outcome
Selenium is a trace element that plays a critical role in physiological processes and cancer prevention, whose functions may be through its effects on selenium-containing proteins. Selenium-binding protein 1 (SBP1) is a member of an unusual class of selenium-containing proteins that may function as a tumor suppressor in multiple cancer types and whose levels have been shown to be lower in cancers as compared to corresponding normal tissues. This review is intended to summarize recent advances in gaining an understanding of the significance of SBP1 in carcinogenesis, and suggest that SBP1 could be developed as a potential biomarker for cancer progression and prognosis
Replication Fork Collapse and Genome Instability in a Deoxycytidylate Deaminase Mutant
Ribonucleotide reductase (RNR) and deoxycytidylate deaminase (dCMP deaminase) are pivotal allosteric enzymes required to maintain adequate pools of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis and repair. Whereas RNR inhibition slows DNA replication and activates checkpoint responses, the effect of dCMP deaminase deficiency is largely unknown. Here, we report that deleting the Schizosaccharomyces pombe dcd1(+) dCMP deaminase gene (SPBC2G2.13c) increases dCTP ∼30-fold and decreases dTTP ∼4-fold. In contrast to the robust growth of a Saccharomyces cerevisiae dcd1Δ mutant, fission yeast dcd1Δ cells delay cell cycle progression in early S phase and are sensitive to multiple DNA-damaging agents, indicating impaired DNA replication and repair. DNA content profiling of dcd1Δ cells differs from an RNR-deficient mutant. Dcd1 deficiency activates genome integrity checkpoints enforced by Rad3 (ATR), Cds1 (Chk2), and Chk1 and creates critical requirements for proteins involved in recovery from replication fork collapse, including the γH2AX-binding protein Brc1 and Mus81 Holliday junction resolvase. These effects correlate with increased nuclear foci of the single-stranded DNA binding protein RPA and the homologous recombination repair protein Rad52. Moreover, Brc1 suppresses spontaneous mutagenesis in dcd1Δ cells. We propose that replication forks stall and collapse in dcd1Δ cells, burdening DNA damage and checkpoint responses to maintain genome integrity