186 research outputs found

    Development of Sensory, Motor and Behavioral Deficits in the Murine Model of Sanfilippo Syndrome Type B

    Get PDF
    BACKGROUND: Mucopolysaccharidosis (MPS) IIIB (Sanfilippo Syndrome type B) is caused by a deficiency in the lysosomal enzyme N-acetyl-glucosaminidase (Naglu). Children with MPS IIIB develop disturbances of sleep, activity levels, coordination, vision, hearing, and mental functioning culminating in early death. The murine model of MPS IIIB demonstrates lysosomal distention in multiple tissues, a shortened life span, and behavioral changes. PRINCIPAL FINDINGS: To more thoroughly assess MPS IIIB in mice, alterations in circadian rhythm, activity level, motor function, vision, and hearing were tested. The suprachiasmatic nucleus (SCN) developed pathologic changes and locomotor analysis showed that MPS IIIB mice start their daily activity later and have a lower proportion of activity during the night than wild-type controls. Rotarod assessment of motor function revealed a progressive inability to coordinate movement in a rocking paradigm. Purkinje cell counts were significantly reduced in the MPS IIIB animals compared to age matched controls. By electroretinography (ERG), MPS IIIB mice had a progressive decrease in the amplitude of the dark-adapted b-wave response. Corresponding pathology revealed shortening of the outer segments, thinning of the outer nuclear layer, and inclusions in the retinal pigmented epithelium. Auditory-evoked brainstem responses (ABR) demonstrated progressive hearing deficits consistent with the observed loss of hair cells in the inner ear and histologic abnormalities in the middle ear. CONCLUSIONS/SIGNIFICANCE: The mouse model of MPS IIIB has several quantifiable phenotypic alterations and is similar to the human disease. These physiologic and histologic changes provide insights into the progression of this disease and will serve as important parameters when evaluating various therapies

    Hypoxia-Induced Mitogenic Factor (HIMF/FIZZ1/RELMα) Recruits Bone Marrow-Derived Cells to the Murine Pulmonary Vasculature

    Get PDF
    . and localized to the media layer of the vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a cell migration assay using cultured human mesenchymal stem cells (HMSCs). The addition of recombinant HIMF induced migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner.These results demonstrate HIMF-dependent recruitment of BMD mesenchymal-like cells to the remodeling pulmonary vasculature

    Effective Long-Distance Pollen Dispersal in Centaurea jacea

    Get PDF
    BACKGROUND: Agri-environment schemes play an increasingly important role for the conservation of rare plants in intensively managed agricultural landscapes. However, little is known about their effects on gene flow via pollen dispersal between populations of these species. METHODOLOGY/PRINCIPAL FINDINGS: In a 2-year experiment, we observed effective pollen dispersal from source populations of Centaurea jacea in restored meadows, the most widespread Swiss agri-environment scheme, to potted plants in adjacent intensively managed meadows without other individuals of this species. Potted plants were put in replicated source populations at 25, 50, 100 m and where possible 200 m distance from these source populations. Pollen transfer among isolated plants was prevented by temporary bagging, such that only one isolated plant was accessible for flower visitors at any one time. Because C. jacea is self-incompatible, seed set in single-plant isolates indicated insect mediated effective pollen dispersal from the source population. Seed set was higher in source populations (35.7+/-4.4) than in isolates (4.8+/-1.0). Seed set declined from 18.9% of that in source populations at a distance of 25 m to 7.4% at 200 m. At a distance of 200 m seed set was still significantly higher in selfed plants, indicating long-distance effective pollen dispersal up to 200 m. Analyses of covariance suggested that bees contributed more than flies to this long-distance pollen dispersal. We found evidence that pollen dispersal to single-plant isolates was positively affected by the diversity and flower abundance of neighboring plant species in the intensively managed meadow. Furthermore, the decline of the dispersal was less steep when the source population of C. jacea was large. CONCLUSIONS: We conclude that insect pollinators can effectively transfer pollen from source populations of C. jacea over at least 200 m, even when "recipient populations" consisted of single-plant isolates, suggesting that gene flow by pollen over this distance is very likely. Source population size and flowering environment surrounding recipient plants appear to be important factors affecting pollen dispersal in C. jacea. It is conceivable that most insect-pollinated plants in a network of restored sites within intensively managed grassland can form metapopulations, if distances between sites are of similar magnitude as tested here

    Chronic kidney disease and valvular heart disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

    Get PDF
    Chronic kidney disease (CKD) is a major risk factor for valvular heart disease (VHD). Mitral annular and aortic valve calcifications are highly prevalent in CKD patients and commonly lead to valvular stenosis and regurgitation, as well as complications including conduction system abnormalities and endocarditis. VHD, especially mitral regurgitation and aortic stenosis, is associated with significantly reduced survival among CKD patients. Knowledge related to VHD in the general population is not always applicable to CKD patients because the pathophysiology may be different, and CKD patients have a high prevalence of comorbid conditions and elevated risk for periprocedural complications and mortality. This Kidney Disease: Improving Global Outcomes (KDIGO) review of CKD and VHD seeks to improve understanding of the epidemiology, pathophysiology, diagnosis, and treatment of VHD in CKD by summarizing knowledge gaps, areas of controversy, and priorities for research

    Isolation of alveolar epithelial type II progenitor cells from adult human lungs

    Get PDF
    Resident stem/progenitor cells in the lung are important for tissue homeostasis and repair. However, a progenitor population for alveolar type II (ATII) cells in adult human lungs has not been identified. The aim of this study is to isolate progenitor cells from adult human lungs with the ability to differentiate into ATII cells. We isolated colony-forming cells that had the capability for self-renewal and the potential to generate ATII cells in vitro. These undifferentiated progenitor cells expressed surface markers of mesenchymal stem cells (MSCs) and surfactant proteins associated with ATII cells, such as CD90 and pro-surfactant protein-C (pro-SP-C), respectively. Microarray analyses indicated that transcripts associated with lung development were enriched in the pro-SP-C+/CD90+ cells compared with bone marrow-MSCs. Furthermore, pathological evaluation indicated that pro-SP-C and CD90 double-positive cells were present within alveolar walls in normal lungs, and significantly increased in ATII cell hyperplasias contributing to alveolar epithelial repair in damaged lungs. Our findings demonstrated that adult human lungs contain a progenitor population for ATII cells. This study is a first step toward better understanding of stem cell biology in adult human lung alveoli

    Relevance of Stress and Female Sex Hormones for Emotion and Cognition

    Get PDF
    There are clear sex differences in incidence and onset of stress-related and other psychiatric disorders in humans. Yet, rodent models for psychiatric disorders are predominantly based on male animals. The strongest argument for not using female rodents is their estrous cycle and the fluctuating sex hormones per phase which multiplies the number of animals to be tested. Here, we will discuss studies focused on sex differences in emotionality and cognitive abilities in experimental conditions with and without stress. First, female sex hormones such as estrogens and progesterone affect emotions and cognition, contributing to sex differences in behavior. Second, females respond differently to stress than males which might be related to the phase of the estrous cycle. For example, female rats and mice express less anxiety than males in a novel environment. Proestrus females are less anxious than females in the other estrous phases. Third, males perform in spatial tasks superior to females. However, while stress impairs spatial memory in males, females improve their spatial abilities, depending on the task and kind of stressor. We conclude that the differences in emotion, cognition and responses to stress between males and females over the different phases of the estrous cycle should be used in animal models for stress-related psychiatric disorders
    corecore