14 research outputs found

    Tagging single-nucleotide polymorphisms in candidate oncogenes and susceptibility to ovarian cancer

    Get PDF
    Low–moderate risk alleles that are relatively common in the population may explain a significant proportion of the excess familial risk of ovarian cancer (OC) not attributed to highly penetrant genes. In this study, we evaluated the risks of OC associated with common germline variants in five oncogenes (BRAF, ERBB2, KRAS, NMI and PIK3CA) known to be involved in OC development. Thirty-four tagging SNPs in these genes were genotyped in ∼1800 invasive OC cases and 3000 controls from population-based studies in Denmark, the United Kingdom and the United States. We found no evidence of disease association for SNPs in BRAF, KRAS, ERBB2 and PIK3CA when OC was considered as a single disease phenotype; but after stratification by histological subtype, we found borderline evidence of association for SNPs in KRAS and BRAF with mucinous OC and in ERBB2 and PIK3CA with endometrioid OC. For NMI, we identified a SNP (rs11683487) that was associated with a decreased risk of OC (unadjusted Pdominant=0.004). We then genotyped rs11683487 in another 1097 cases and 1792 controls from an additional three case–control studies from the United States. The combined odds ratio was 0.89 (95% confidence interval (CI): 0.80–0.99) and remained statistically significant (Pdominant=0.032). We also identified two haplotypes in ERBB2 associated with an increased OC risk (Pglobal=0.034) and a haplotype in BRAF that had a protective effect (Pglobal=0.005). In conclusion, these data provide borderline evidence of association for common allelic variation in the NMI with risk of epithelial OC

    Diabetic nephropathy: What does the future hold?

    Full text link

    A Systematic Fault Tree Analysis Based on Multi-level Flow Modeling

    No full text

    Proteomic biomarkers in kidney disease: issues in development and implementation

    No full text
    Proteomic biomarkers offer the hope of improving the management of patients with kidney diseases by enabling more accurate and earlier detection of renal pathology than is possible with currently available biomarkers, serum creatinine and urinary albumin. In addition, proteomic biomarkers could also be useful to define the most suitable therapeutic targets in a given patient or disease setting. This Review describes the current status of proteomic and protein biomarkers in the context of kidney diseases. The valuable lessons learned from early clinical studies of potential proteomic biomarkers in kidney disease are presented to give context to the newly identified biomarkers, which have potential for actual clinical implementation. This article also includes an overview of protein-based biomarker candidates that are undergoing development for use in nephrology, focusing on those with the greatest potential for clinical implementation. Relevant issues and problems associated with the discovery, validation and clinical application of proteomic biomarkers are discussed, along with suggestions for solutions that might help to guide the design of future proteomic studies. These improvements might remove some of the current obstacles to the utilization of proteomic biomarkers, with potentially beneficial results
    corecore