12 research outputs found

    SPFC: a tool to improve water management and hay production in the Crau region

    Get PDF
    Correspondance: [email protected] ; UMR SYSTEM équipe CONSYSTThis article deals with the development and application of SPFC, a model used to improve water and grassland production (HC) in this region of France. This model is composed of two sub-models: an irrigation model and a crop model. As the fields are border irrigated, these two sub-models are coupled. The crop model simulates dry matter, Leaf Area Index (LAI) and soil water reserve (SWR) variations. LAI and SWR are both used for border model updating: SWR for the deficit of saturation required by the infiltration equation and LAI for the roughness coefficient n. After calibration and validation, SPFC is then used to identify realistic management strategies for the irrigation and production system at the plot level. By scheduling irrigation when SWR is 50% depleted, would result in a low Dry Matter DM production loss (around 10%), reduced labour (8 irrigation events instead of 11) and in significant water saving compared with farmers' practices, on the basis of an average climatic scenario. Furthermore, this improvement of irrigation efficiency is not incompatible with groundwater recharge used for the potable water supply of the region

    Influence of seasonality and vegetation type on suburban microclimates

    Full text link
    Urbanization is responsible for some of the fastest rates of land-use change around the world, with important consequences for local, regional, and global climate. Vegetation, which represents a significant proportion of many urban and suburban landscapes, can modify climate by altering local exchanges of heat, water vapor, and CO2. To determine how distinct urban forest communities vary in their microclimate effects over time, we measured stand-level leaf area index, soil temperature, infrared surface temperature, and soil water content over a complete growing season at 29 sites representing the five most common vegetation types in a suburban neighborhood of Minneapolis–Saint Paul, Minnesota. We found that seasonal patterns of soil and surface temperatures were controlled more by differences in stand-level leaf area index and tree cover than by plant functional type. Across the growing season, sites with high leaf area index had soil temperatures that were 7°C lower and surface temperatures that were 6°C lower than sites with low leaf area index. Site differences in mid-season soil temperature and turfgrass ground cover were best explained by leaf area index, whereas differences in mid-season surface temperature were best explained by percent tree cover. The significant cooling effects of urban tree canopies on soil temperature imply that seasonal changes in leaf area index may also modulate CO2 efflux from urban soils, a highly temperature-dependent process, and that this should be considered in calculations of total CO2 efflux for urban carbon budgets. Field-based estimates of percent tree cover were found to better predict mid-season leaf area index than satellite-derived estimates and consequently offer an approach to scale up urban biophysical properties

    Annual variation in soil respiration and its component parts in two structurally contrasting woody savannas in Central Brazil

    No full text
    Background and aims: Due to the high spatial and temporal variation in soil CO₂ efflux, terrestrial carbon budgets rely on a detailed understanding of the drivers of soil respiration from a diverse range of ecosystems and climate zones. In this study we aim to evaluate the independent influence of vegetation structure and climate on soil CO₂ efflux within cerrado ecosystems. \ud \ud Methods: We examine the seasonal and diel variation of soil CO₂ efflux, including its autotrophic and heterotrophic components, within two adjacent and structurally contrasting woody savannas in central Brazil. \ud \ud Principle results: We found no significant difference in the annual soil CO₂ efflux between the two stands (p=0.53) despite a clear disparity in both LAI (p<0.01) and leaf litterfall (p<0.01). The mean annual loss of carbon from the soil was 17.32(± 1.48) Mg Cha⁻¹ of which approximately 63% was accounted for by autotrophic respiration. The relative contribution of autotrophic respiration varied seasonally between 55% in the wet season to 79% of the total soil CO₂ efflux in the dry season. Furthermore, seasonal fluctuations of all the soil respiration components were strongly correlated with soil moisture (R²=0.79-0.90, p<0.01). \ud \ud Conclusions: Across these two structurally distinct cerrado stands, seasonal variations in rainfall, was the main driver of soil CO₂ efflux and its components. Consequently, soil respiration within these ecosystems is likely to be highly sensitive to any changes in seasonal precipitation patterns
    corecore