32 research outputs found
Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the articleâs Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. Acknowledgements We would like to thank Dr Robert Griffith/CEH for providing DNA from soil samples and Dr Anthony Travis for his help with BioLinux. Sequencing was performed in NERC platform in Liverpool. CG-R was funded by a NERC fellowship NE/J019151/1. CQ was funded by a MRC fellowship (MR/M50161X/1) as part of the cloud infrastructure for microbial genomics consortium (MR/L015080/1).Peer reviewedPublisher PD
Magmatic eruptions and iron volatility in deep-sea hydrothermal fluids
During periods of volcanic activity, hydrothermal fluid chemistry changes drastically, becoming unusually dilute due to enhanced degrees of phase separation. Despite decreases in nearly all other metals, these dilute fluids maintain surprisingly high dissolved Fe concentrations. This is demonstrated by a 17 yr time series from 9°50'N on the East Pacific Rise, where two eruption cycles are separated by a decade of steady-state chemical and physical conditions. We report experimental data confi rming a sharp increase in Fe solubility in low-salinity and low-density vapors that constitutes a reversal in behavior exhibited in near-critical vapors characteristic of the steady-state condition. In accordance with field observations during the eruptions, a fundamental divergence between the otherwise similar behaviors of Fe and Mn also results. This helps explain how Fe fluxes are maintained during magmatic events, which may have important implications for the succession and temporal evolution of vent-related fauna. Calibrated geochemical proxies for subseafl oor reaction conditions (pressure-temperature) now allow us to elucidate hydrothermal processes from steady state through eruptive and recovery stages at the 9°50'N system. © 2014 Geological Society of America
Recommended from our members
Magmatic eruptions and iron volatility in deep-sea hydrothermal fluids
During periods of volcanic activity, hydrothermal fluid chemistry changes drastically, becoming unusually dilute due to enhanced degrees of phase separation. Despite decreases in nearly all other metals, these dilute fluids maintain surprisingly high dissolved Fe concentrations. This is demonstrated by a 17 yr time series from 9°50'N on the East Pacific Rise, where two eruption cycles are separated by a decade of steady-state chemical and physical conditions. We report experimental data confi rming a sharp increase in Fe solubility in low-salinity and low-density vapors that constitutes a reversal in behavior exhibited in near-critical vapors characteristic of the steady-state condition. In accordance with field observations during the eruptions, a fundamental divergence between the otherwise similar behaviors of Fe and Mn also results. This helps explain how Fe fluxes are maintained during magmatic events, which may have important implications for the succession and temporal evolution of vent-related fauna. Calibrated geochemical proxies for subseafl oor reaction conditions (pressure-temperature) now allow us to elucidate hydrothermal processes from steady state through eruptive and recovery stages at the 9°50'N system. © 2014 Geological Society of America
Vapor-liquid partitioning of alkaline earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study from 360 to 465°C, near-critical to halite saturated conditions
© 2015 . Multi-phase fluid flow is a common occurrence in magmatic hydrothermal systems; and extensive modeling efforts using currently established P-V-T-x properties of the NaCl-H2O system are impending. We have therefore performed hydrothermal flow experiments (360-465°C) to observe vapor-liquid partitioning of alkaline earth and first row transition metals in NaCl-dominated source solutions. The data allow extraction of partition coefficients related to the intrinsic changes in both chlorinity and density along the two-phase solvus. The coefficients yield an overall decrease in vapor affinity in the order Cu(I)>Na>Fe(II)>Zn>Ni(II)â„Mgâ„Mn(II)>Co(II)>Ca>Sr>Ba, distinguished with 95% confidence for vapor densities greater than ~0.2g/cm3. The alkaline earth metals are limited to purely electrostatic interactions with Cl ligands, resulting in an excellent linear correlation (R2>0.99) between their partition coefficients and respective ionic radii. Though broadly consistent with this relationship, relative behavior of the transition metals is not well resolved, being likely obscured by complex bonding processes and the potential participation of Na in the formation of tetra-chloro species. At lower densities (at/near halite saturation) partitioning behavior of all metals becomes highly non-linear, where M/Cl ratios in the vapor begin to increase despite continued decreases in chlorinity and density. We refer to this phenomenon as "volatility", which is broadly associated with substantial increases in the HCl/NaCl ratio (eventually to >1) due to hydrolysis of NaCl. Some transition metals (e.g., Fe, Zn) exhibit volatility prior to halite stability, suggesting a potential shift in vapor speciation relative to nearer critical regions of the vapor-liquid solvus. The chemistry of deep-sea hydrothermal fluids appears affected by this process during magmatic events, however, our results do not support suggestions of subseafloor halite precipitation recorded in currently available field data. Ca-Cl systematics in vent fluids are specifically explored, revealing behavior consistent with partitioning due to phase separation. Interestingly, the effect of variable chloride on dissolved Na/Ca ratios associated with plagioclase solubility (in single-phase solutions) appears fundamentally similar to that of phase separation on vapor compositions such that vapors evolved in hydrothermal systems may naturally remain near equilibrium with the host lithology. Conversely, residual liquids/brines left behind in the crust may be undersaturated with metals, enhancing the rate and extent of hydrothermal alteration
Recommended from our members
Kinetics of D/H isotope fractionation between molecular hydrogen and water
At equilibrium, the D/H isotope fractionation factor between H2 and H2O (αH2O-H2(eq)) is a sensitive indicator of temperature, and has been used as a geothermometer for natural springs and gas discharges. However, ÎŽDH2 measured in spring waters may underestimate subsurface temperatures of origin due to partial isotopic re-equilibration during ascent and cooling. We present new experimental data on the kinetics of DâH exchange for H2 dissolved in liquid water at temperatures below 100 °C. Comparing these results with published exchange rates obtained from gas phase experiments (100â400 °C), we derive a consistent activation energy of 52 kJ/mol, and the following rate expressions; lnk=9.186-6298/Tandk1=9764.61[H2O]e-6298/T where T is absolute temperature (K), k is the universal rate constant ([L/mol]/hr), and k1 is a pseudo-first-order constant (hrâ1) applicable to water-dominated terrestrial systems by constraining [H2O] as the density of H2O (in mol/L) at the P-T of interest. The density-dependent rate constant accounts for the kinetic disparity of DâH exchange with H2 when dissolved in liquid H2O relative to a gas/steam phase, exemplifed by 1/k1 at 100 °C of âŒ2 days in liquid, versus âŒ7 yrs in saturated steam. This difference may explain the high variability of ÎŽDH2 observed in fumarolic gases. Fluids convecting in the crust frequently reach T > 225 °C, where isotopic equilibrium is rapidly attained (<1 hr). We compare fractionation factors measured in natural fluids (αOBS) with values expected for equilibrium at the T of acquisition. Where these values differ, we use kinetic models to estimate cooling rates during upward advection that account for the observed disequilibrium. Models fit to fluids from Yellowstone Park and the Lost City (deep-sea) vent field, both recovered at âŒ90 °C, require respective transit times of âŒ7 hrs and âŒ11 days between higher temperature reaction zones and the surface. Using estimates of subsurface depths of origin, however, suggests similar mean fluid flow rates (10 s of meters/hr). Additional complications must be considered when interpreting the ÎŽDH2 of lower-temperature effluent. When applied to data from deep-sea hydrothermal systems, our kinetic models indicate microbial catalysis accelerates DâH exchange once fluids cool below âŒ60 °C. The H2 measured in both continental alkaline springs and fracture fluids from Precambrian shield rock is likely produced at T < 100 °C, through processes such as serpentinization. In these settings, ÎŽDH2 values appear closer to equilibrium with H2O than those from geothermal systems. Considering kinetic isotope effects may yield H2 that is out of equilibrium when generated at lower temperatures, we calculate maximum (isothermal) times to apparent isotopic equilibrium of 1.3 yrs at 50 °C, 9 yrs at 25 °C, and 35 yrs at 10 °C. A similar calculation applied to Antarctic brines (â13 °C), where measured ÎŽDH2 is far from equilibrium, yields âŒ350 yrs. This time is shorter than the fluids have been isolated (2.8 ka), suggesting kinetic isotope effects associated with H2 destruction or loss via diffusion may also be possible
Calcium isotope systematics at hydrothermal conditions: Mid-ocean ridge vent fluids and experiments in the CaSO4-NaCl-H2O system
© 2018 Elsevier Ltd Two sets of hydrothermal experiments were performed to explore Ca isotope fractionation and exchange rates at hydrothermal conditions (410â450 °C, 31.0â50.0 MPa). The first set of experiments determined the magnitude of vapor-liquid Ca isotope fractionation and anhydrite solubility in the CaSO4-NaCl-H2O system. The data indicate no statistical difference between the Ca isotopic composition of coexisting vapor and liquid. The second set of experiments utilized an anomalous 43Ca spike to determine the rate of Ca exchange between fluid and anhydrite as a function of total dissolved Ca concentration. Results show that the rate of exchange increases with dissolved Ca concentrations (12â23 mM/kg), but no change in exchange rate is observed when the Ca concentration increases from 23 to 44 mM/kg Ca. 74â142 days are required to achieve 90% anhydrite-fluid Ca isotope exchange at the conditions investigated, while only several hours are necessary for vapor-liquid isotopic equilibrium. The lack of vapor-liquid Ca isotope fractionation in our experiments is consistent with ÎŽ44Ca of mid-ocean ridge hydrothermal vent fluids that remain constant, regardless of chlorinity. Moreover, the narrow range of end member fluid ÎŽ44Ca, â0.98 to â1.13â° (SW), is largely indistinguishable from MORB ÎŽ44Ca, suggesting that neither phase separation nor fluid-rock interactions at depth significantly fractionate Ca isotopes in modern high-temperature mid-ocean ridge hydrothermal systems
Experimental partitioning of Ca isotopes and Sr into anhydrite: Consequences for the cycling of Ca and Sr in subseafloor mid-ocean ridge hydrothermal systems
The elemental and isotopic mass balance of Ca and Sr between seawater and the oceanic crust at mid-ocean ridge (MOR) hydrothermal systems integrates various physiochemical processes in the subseafloor, such as dissolution of primary silicate minerals, formation of secondary minerals, and phase separation in the subseafloor. In particular, the precipitation and recrystallization of anhydrite are recognized as important processes controlling the Ca and Sr elemental and isotope composition of high temperature vent fluids and coexisting ocean crust, and yet, little experimental data exist to constrain the mechanism and magnitude of these critical geochemical effects. Thus, this study experimentally examines Sr/Ca partitioning, Ca isotope fractionation, and the rate of exchange between anhydrite and dissolved constituents. These experimental constraints are then compared with Sr/Ca and Ca isotope compositions of anhydrite and vent fluids sampled from the TAG hydrothermal system. Accordingly, anhydrite precipitation and recrystallization experiments were performed at 175, 250, and 350 °C and 500 bar at chemical conditions characteristic of active MOR hydrothermal systems. Experimental data suggest that upon entrainment and recharge of seawater into MOR hydrothermal systems anhydrite will rapidly precipitate with a Ca isotopic composition that is depleted in the heavy isotope compared to the hydrothermal fluid. The magnitude of the Ca isotope fractionation, Î44/40Ca(Anh-Fluid), is temperature dependent, â0.45, â0.22, and â0.02â° for 175, 250, and 350 °C, respectively, but likely indicative of kinetic effects. Utilization of a 43Ca spike in solution was implemented to quantify the time-dependent extent of isotope exchange during anhydrite recrystallization at chemical equilibrium. These data indicate that the rate of exchange is a function of temperature, where 12, 46, and 45% exchange occurred within 1322, 867, 366 h at 175, 250, and 350 °C, respectively. The partitioning of Sr/Ca between anhydrite and constituent dissolved species during precipitation depends greatly on the saturation state of the hydrothermal fluid with respect to anhydrite at each experimental temperature, KD(Anh-Fluid) = 1.24â0.55 at 175â350 °C, broadly similar to results of earlier experimental observations by Shikazono and Holland (1983). Equilibrium KD(Anh-Fluid) values were estimated by taking explicit account of time dependent magnitude of exchange, yielding values of 0.43, 0.36, 0.29 at 175, 250, and 350 °C, respectively. Coupling these experimental constraints with the temperature gradient inferred for high temperature MOR hydrothermal systems suggests that the Ca isotope and Sr elemental composition of anhydrite formed near the seafloor will retain the composition derived upon initial formation conditions, which is indicative of disequilibrium. In contrast, at greater depths and at higher temperatures, anhydrite will reflect close to equilibrium Sr/Ca partitioning and Ca isotope fractionation conditions. The experimental and natural data presented in this study can be used to further understand the effect of anhydrite precipitation during hydrothermal circulation in the oceanic crust and on the chemical and isotopic composition of seawater on geologic timescales
Recommended from our members
Experimental determination of hydrogen isotope exchange rates between methane and water under hydrothermal conditions
The hydrogen isotopic composition of methane (CH4) is used as a fingerprint of gas origins. Exchange of hydrogen isotopes between CH4 and liquid water has been proposed to occur in both low- and high-temperature settings. However, despite environmental evidence for hydrogen isotope exchange between CH4 and liquid water, there are few experimental constraints on the kinetics of this process. We present results from hydrothermal experiments conducted to constrain the kinetics of hydrogen isotope exchange between CH4 and supercritical water. Seven isothermal experiments were performed over a temperature range of 376â420 °C in which deuterium-enriched water and CH4 were reacted in flexible gold reaction cell systems. Rates of exchange were determined by measuring the change in the ÎŽD of CH4 over the time course of an experiment. Regression of derived second order rate constants (kr) vs. 1000/T (i.e., an Arrhenius plot) yields the following equation: ln(kr) = â17.32 (±4.08, 1 s.e.) Ă 1000/T + 3.19 (±6.01, 1 s.e.) (units of kr of secâ1 [mol/L]â1), equivalent to an activation energy of 144.0 ± 33.9 kJ/mol (1 s.e.). These results indicate that without catalysts, CH4 will not exchange hydrogen isotopes with liquid water on a timescale shorter than the age of the Earth (i.e., billions of years) at temperatures below 100â125 °C. Exchange at or below these temperatures is thought to occur due to the activity of life, and thus hydrogen isotopic equilibrium between methane and water may be a biosignature at low temperatures on Earth (in the present or the past) and on other planetary bodies. At temperatures ranging from 125 to 200 °C, hydrogen isotope exchange between CH4 and liquid water can occur on timescales of millions to hundreds of thousands of years, indicating that in thermogenic natural gas systems CH4 may isotopically equilibrate with water and achieve equilibrium isotopic compositions. Finally, the kinetics indicate that in deep-sea hydrothermal systems, the hydrogen (and thus clumped) isotopic composition of CH4 is likely set by formation and/or storage conditions isolated from the active flow regime. The determined kinetics indicate that once methane is entrained in circulating fluids, the expected time-temperature pathways are insufficient for measurable hydrogen isotope exchange between CH4 and water to occur