32 research outputs found

    Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. Acknowledgements We would like to thank Dr Robert Griffith/CEH for providing DNA from soil samples and Dr Anthony Travis for his help with BioLinux. Sequencing was performed in NERC platform in Liverpool. CG-R was funded by a NERC fellowship NE/J019151/1. CQ was funded by a MRC fellowship (MR/M50161X/1) as part of the cloud infrastructure for microbial genomics consortium (MR/L015080/1).Peer reviewedPublisher PD

    Magmatic eruptions and iron volatility in deep-sea hydrothermal fluids

    No full text
    During periods of volcanic activity, hydrothermal fluid chemistry changes drastically, becoming unusually dilute due to enhanced degrees of phase separation. Despite decreases in nearly all other metals, these dilute fluids maintain surprisingly high dissolved Fe concentrations. This is demonstrated by a 17 yr time series from 9°50'N on the East Pacific Rise, where two eruption cycles are separated by a decade of steady-state chemical and physical conditions. We report experimental data confi rming a sharp increase in Fe solubility in low-salinity and low-density vapors that constitutes a reversal in behavior exhibited in near-critical vapors characteristic of the steady-state condition. In accordance with field observations during the eruptions, a fundamental divergence between the otherwise similar behaviors of Fe and Mn also results. This helps explain how Fe fluxes are maintained during magmatic events, which may have important implications for the succession and temporal evolution of vent-related fauna. Calibrated geochemical proxies for subseafl oor reaction conditions (pressure-temperature) now allow us to elucidate hydrothermal processes from steady state through eruptive and recovery stages at the 9°50'N system. © 2014 Geological Society of America

    Vapor-liquid partitioning of alkaline earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study from 360 to 465°C, near-critical to halite saturated conditions

    No full text
    © 2015 . Multi-phase fluid flow is a common occurrence in magmatic hydrothermal systems; and extensive modeling efforts using currently established P-V-T-x properties of the NaCl-H2O system are impending. We have therefore performed hydrothermal flow experiments (360-465°C) to observe vapor-liquid partitioning of alkaline earth and first row transition metals in NaCl-dominated source solutions. The data allow extraction of partition coefficients related to the intrinsic changes in both chlorinity and density along the two-phase solvus. The coefficients yield an overall decrease in vapor affinity in the order Cu(I)>Na>Fe(II)>Zn>Ni(II)≄Mg≄Mn(II)>Co(II)>Ca>Sr>Ba, distinguished with 95% confidence for vapor densities greater than ~0.2g/cm3. The alkaline earth metals are limited to purely electrostatic interactions with Cl ligands, resulting in an excellent linear correlation (R2>0.99) between their partition coefficients and respective ionic radii. Though broadly consistent with this relationship, relative behavior of the transition metals is not well resolved, being likely obscured by complex bonding processes and the potential participation of Na in the formation of tetra-chloro species. At lower densities (at/near halite saturation) partitioning behavior of all metals becomes highly non-linear, where M/Cl ratios in the vapor begin to increase despite continued decreases in chlorinity and density. We refer to this phenomenon as "volatility", which is broadly associated with substantial increases in the HCl/NaCl ratio (eventually to >1) due to hydrolysis of NaCl. Some transition metals (e.g., Fe, Zn) exhibit volatility prior to halite stability, suggesting a potential shift in vapor speciation relative to nearer critical regions of the vapor-liquid solvus. The chemistry of deep-sea hydrothermal fluids appears affected by this process during magmatic events, however, our results do not support suggestions of subseafloor halite precipitation recorded in currently available field data. Ca-Cl systematics in vent fluids are specifically explored, revealing behavior consistent with partitioning due to phase separation. Interestingly, the effect of variable chloride on dissolved Na/Ca ratios associated with plagioclase solubility (in single-phase solutions) appears fundamentally similar to that of phase separation on vapor compositions such that vapors evolved in hydrothermal systems may naturally remain near equilibrium with the host lithology. Conversely, residual liquids/brines left behind in the crust may be undersaturated with metals, enhancing the rate and extent of hydrothermal alteration

    Calcium isotope systematics at hydrothermal conditions: Mid-ocean ridge vent fluids and experiments in the CaSO4-NaCl-H2O system

    No full text
    © 2018 Elsevier Ltd Two sets of hydrothermal experiments were performed to explore Ca isotope fractionation and exchange rates at hydrothermal conditions (410–450 °C, 31.0–50.0 MPa). The first set of experiments determined the magnitude of vapor-liquid Ca isotope fractionation and anhydrite solubility in the CaSO4-NaCl-H2O system. The data indicate no statistical difference between the Ca isotopic composition of coexisting vapor and liquid. The second set of experiments utilized an anomalous 43Ca spike to determine the rate of Ca exchange between fluid and anhydrite as a function of total dissolved Ca concentration. Results show that the rate of exchange increases with dissolved Ca concentrations (12–23 mM/kg), but no change in exchange rate is observed when the Ca concentration increases from 23 to 44 mM/kg Ca. 74–142 days are required to achieve 90% anhydrite-fluid Ca isotope exchange at the conditions investigated, while only several hours are necessary for vapor-liquid isotopic equilibrium. The lack of vapor-liquid Ca isotope fractionation in our experiments is consistent with ÎŽ44Ca of mid-ocean ridge hydrothermal vent fluids that remain constant, regardless of chlorinity. Moreover, the narrow range of end member fluid ÎŽ44Ca, −0.98 to −1.13‰ (SW), is largely indistinguishable from MORB ÎŽ44Ca, suggesting that neither phase separation nor fluid-rock interactions at depth significantly fractionate Ca isotopes in modern high-temperature mid-ocean ridge hydrothermal systems

    Experimental partitioning of Ca isotopes and Sr into anhydrite: Consequences for the cycling of Ca and Sr in subseafloor mid-ocean ridge hydrothermal systems

    No full text
    The elemental and isotopic mass balance of Ca and Sr between seawater and the oceanic crust at mid-ocean ridge (MOR) hydrothermal systems integrates various physiochemical processes in the subseafloor, such as dissolution of primary silicate minerals, formation of secondary minerals, and phase separation in the subseafloor. In particular, the precipitation and recrystallization of anhydrite are recognized as important processes controlling the Ca and Sr elemental and isotope composition of high temperature vent fluids and coexisting ocean crust, and yet, little experimental data exist to constrain the mechanism and magnitude of these critical geochemical effects. Thus, this study experimentally examines Sr/Ca partitioning, Ca isotope fractionation, and the rate of exchange between anhydrite and dissolved constituents. These experimental constraints are then compared with Sr/Ca and Ca isotope compositions of anhydrite and vent fluids sampled from the TAG hydrothermal system. Accordingly, anhydrite precipitation and recrystallization experiments were performed at 175, 250, and 350 °C and 500 bar at chemical conditions characteristic of active MOR hydrothermal systems. Experimental data suggest that upon entrainment and recharge of seawater into MOR hydrothermal systems anhydrite will rapidly precipitate with a Ca isotopic composition that is depleted in the heavy isotope compared to the hydrothermal fluid. The magnitude of the Ca isotope fractionation, Δ44/40Ca(Anh-Fluid), is temperature dependent, −0.45, −0.22, and −0.02‰ for 175, 250, and 350 °C, respectively, but likely indicative of kinetic effects. Utilization of a 43Ca spike in solution was implemented to quantify the time-dependent extent of isotope exchange during anhydrite recrystallization at chemical equilibrium. These data indicate that the rate of exchange is a function of temperature, where 12, 46, and 45% exchange occurred within 1322, 867, 366 h at 175, 250, and 350 °C, respectively. The partitioning of Sr/Ca between anhydrite and constituent dissolved species during precipitation depends greatly on the saturation state of the hydrothermal fluid with respect to anhydrite at each experimental temperature, KD(Anh-Fluid) = 1.24–0.55 at 175–350 °C, broadly similar to results of earlier experimental observations by Shikazono and Holland (1983). Equilibrium KD(Anh-Fluid) values were estimated by taking explicit account of time dependent magnitude of exchange, yielding values of 0.43, 0.36, 0.29 at 175, 250, and 350 °C, respectively. Coupling these experimental constraints with the temperature gradient inferred for high temperature MOR hydrothermal systems suggests that the Ca isotope and Sr elemental composition of anhydrite formed near the seafloor will retain the composition derived upon initial formation conditions, which is indicative of disequilibrium. In contrast, at greater depths and at higher temperatures, anhydrite will reflect close to equilibrium Sr/Ca partitioning and Ca isotope fractionation conditions. The experimental and natural data presented in this study can be used to further understand the effect of anhydrite precipitation during hydrothermal circulation in the oceanic crust and on the chemical and isotopic composition of seawater on geologic timescales
    corecore