17 research outputs found

    MediPlEx - a tool to combine in silico & experimental gene expression profiles of the model legume Medicago truncatula

    Get PDF
    Henckel K, Küster H, Stutz L, Goesmann A. MediPlEx - a tool to combine in silico and experimental gene expression profiles of the model legume Medicago truncatula. BMC Research Notes. 2010;3(1): 262.BACKGROUND:Expressed Sequence Tags (ESTs) are in general used to gain a first insight into gene activities from a species of interest. Subsequently, and typically based on a combination of EST and genome sequences, microarray-based expression analyses are performed for a variety of conditions. In some cases, a multitude of EST and microarray experiments are conducted for one species, covering different tissues, cell states, and cell types. Under these circumstances, the challenge arises to combine results derived from the different expression profiling strategies, with the goal to uncover novel information on the basis of the integrated datasets.FINDINGS:Using our new application, MediPlEx (MEDIcago truncatula multiPLe EXpression analysis), expression data from EST experiments, oligonucleotide microarrays and Affymetrix GeneChips can be combined and analyzed, leading to a novel approach to integrated transcriptome analysis. We have validated our tool via the identification of a set of well-characterized AM-specific and AM-induced marker genes, identified by MediPlEx on the basis of in silico and experimental gene expression profiles from roots colonized with AM fungi.CONCLUSIONS:MediPlEx offers an integrated analysis pipeline for different sets of expression data generated for the model legume Medicago truncatula. As expected, in silico and experimental gene expression data that cover the same biological condition correlate well. The collection of differentially expressed genes identified via MediPlEx provides a starting point for functional studies in plant mutants. MediPlEx can freely be used at http://www.cebitec.uni-bielefeld.de/mediplex

    Manganese levels in infant formula and young child nutritional beverages in the United States and France: Comparison to breast milk and regulations

    No full text
    Exposure to high levels of manganese (Mn) in children has recently been associated with adverse neurodevelopmental effects. Current infant formula regulations for Mn content were set between 1981 (United States), 2006 (European Union, France), and 2007 (Codex Alimentarius) prior to the publication of much of the growing body of research on the developmental neurotoxicity of Mn. In this study, we sought to measure the concentrations of Mn in some infant formulas and young child nutritional beverages available on the United States (US) and French markets using ion beam analysis by particle induced X-ray emission (PIXE) spectrometry and then compare the analytical results to concentrations reported in the literature for breast milk and applicable infant formula regulations and guidelines. We were particularly interested in measuring Mn concentrations in product types for which there is very little data from previous surveys, especially soy-based, rice-based, goat-milk based, chocolate-flavored, and nutritional beverages for young children that are not regulated as infant or follow-on formulas (e.g. "toddler formulas" and "toddler powders"). We purchased 44 infant formulas and young child nutritional beverage products in the US and France with varying protein sources (cow-milk, goat-milk, soy, rice) labelled for birth to 3 years. We selected these samples using maximum variation sampling to explore market extremes to facilitate comparisons to regulatory limits. Since this sampling method is non-probabilistic, other inferences cannot be made beyond this set of samples to the overall markets. We used ion beam analysis to measure the concentrations of Mn in each product. The range of measured Mn concentrations in the products is 160-2,800 μg/L, substantially higher than the 3-6 μg/L mean Mn concentration reported in human breast milk. All products satisfied national and Codex Alimentarius Commission (CAC) international standards for minimum Mn content in infant formulas; however, 7/25 of the products purchased in the US exceeded the CAC Guidance Upper Level of 100 μg Mn/kcal for infant formula
    corecore