28 research outputs found

    GABAA-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus

    Get PDF
    The ability to detect novel sounds in a complex acoustic context is crucial for survival. Neurons from midbrain through cortical levels adapt to repetitive stimuli, while maintaining responsiveness to rare stimuli, a phenomenon called stimulus-specific adaptation (SSA). The site of origin and mechanism of SSA are currently unknown. We used microiontophoretic application of gabazine to examine the role of GABAA-mediated inhibition in SSA in the inferior colliculus, the midbrain center for auditory processing. We found that gabazine slowed down the process of adaptation to high probability stimuli but did not abolish it, with response magnitude and latency still depending on the probability of the stimulus. Blocking GABAA receptors increased the firing rate to high and low probability stimuli, but did not completely equalize the responses. Together, these findings suggest that GABAA-mediated inhibition acts as a gain control mechanism that enhances SSA by modifying the responsiveness of the neuron

    Translational actomyosin research: fundamental insights and applications hand in hand

    Full text link

    The tumbleweed: towards a synthetic protein motor

    No full text
    Biomolecular motors have inspired the design and construction of artificial nanoscale motors and machines based on nucleic acids, small molecules, and inorganic nanostructures. However, the high degree of sophistication and efficiency of biomolecular motors, as well as their specific biological function, derives from the complexity afforded by protein building blocks. Here, we discuss a novel bottom-up approach to understanding biological motors by considering the construction of synthetic protein motors. Specifically, we present a design for a synthetic protein motor that moves along a linear track, dubbed the “Tumbleweed.” This concept uses three discrete ligand-dependent DNA-binding domains to perform cyclically ligand-gated, rectified diffusion along a synthesized DNA molecule. Here we describe how de novo peptide design and molecular biology could be used to produce the Tumbleweed, and we explore the fundamental motor operation of such a design using numerical simulations. The construction of this and more sophisticated protein motors is an exciting challenge that is likely to enhance our understanding of the structure-function relationship in biological motors.Biomolecular motors have inspired the design and construction of artificial nanoscale motors and machines based on nucleic acids, small molecules, and inorganic nanostructures. However, the high degree of sophistication and efficiency of biomolecular motors, as well as their specific biological function, derives from the complexity afforded by protein building blocks. Here, we discuss a novel bottom-up approach to understanding biological motors by considering the construction of synthetic protein motors. Specifically, we present a design for a synthetic protein motor that moves along a linear track, dubbed the “Tumbleweed.” This concept uses three discrete ligand-dependent DNA-binding domains to perform cyclically ligand-gated, rectified diffusion along a synthesized DNA molecule. Here we describe how de novo peptide design and molecular biology could be used to produce the Tumbleweed, and we explore the fundamental motor operation of such a design using numerical simulations. The construction of this and more sophisticated protein motors is an exciting challenge that is likely to enhance our understanding of the structure-function relationship in biological motors

    Processing Temporal Modulations in Binaural and Monaural Auditory Stimuli by Neurons in the Inferior Colliculus and Auditory Cortex

    Get PDF
    Processing dynamic changes in the stimulus stream is a major task for sensory systems. In the auditory system, an increase in the temporal integration window between the inferior colliculus (IC) and auditory cortex is well known for monaural signals such as amplitude modulation, but a similar increase with binaural signals has not been demonstrated. To examine the limits of binaural temporal processing at these brain levels, we used the binaural beat stimulus, which causes a fluctuating interaural phase difference, while recording from neurons in the unanesthetized rabbit. We found that the cutoff frequency for neural synchronization to the binaural beat frequency (BBF) decreased between the IC and auditory cortex, and that this decrease was associated with an increase in the group delay. These features indicate that there is an increased temporal integration window in the cortex compared to the IC, complementing that seen with monaural signals. Comparable measurements of responses to amplitude modulation showed that the monaural and binaural temporal integration windows at the cortical level were quantitatively as well as qualitatively similar, suggesting that intrinsic membrane properties and afferent synapses to the cortical neurons govern the dynamic processing. The upper limits of synchronization to the BBF and the band-pass tuning characteristics of cortical neurons are a close match to human psychophysics

    Measuring Individual Cell Cyclic Di-GMP: Identifying Population Diversity and Cyclic Di-GMP Heterogeneity

    No full text
    Cyclic di-GMP is a second messenger used by bacteria to regulate motility, extracellular polysaccharide production, and the cell cycle. Recent advances in the measurement of real time cyclic di-GMP levels in single cells have uncovered significant dynamic heterogeneity of second messenger concentrations within bacterial populations. This heterogeneity results in a wide range of phenotypic outcomes within a single population, providing the potential for population survival and adaptability in response to rapidly changing environments. In this chapter, we discuss some of the measurement technologies available for single-cell measurement of cyclic di-GMP concentrations, the resulting discovery of heterogeneous cyclic di-GMP populations, the mechanisms bacteria use to generate this heterogeneity, and the biochemical and functional consequences of heterogeneity on cyclic di-GMP effector binding and the bacterial population
    corecore