33 research outputs found

    'Everyday memory' impairments in autism spectrum disorders

    Get PDF
    ‘Everyday memory’ is conceptualised as memory within the context of day-to-day life and, despite its functional relevance, has been little studied in individuals with autism spectrum disorders (ASDs). In the first study of its kind, 94 adolescents with an ASD and 55 without an ASD completed measures of everyday memory from the Rivermead Behavioural Memory Test (RBMT) and a standard word recall task (Children’s Auditory Verbal Learning Test-2: CAVLT-2). The ASD group showed significant impairments on the RBMT, including in prospective memory, alongside impaired performance on the CAVLT-2. Social and communication ability was significantly associated with prospective remembering in an everyday memory context but not with the CAVLT-2. The complex nature of everyday memory and its relevance to ASD is discussed

    Inequitable walking conditions among older people: examining the interrelationship of neighbourhood socio-economic status and urban form using a comparative case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Supportive neighbourhood walking conditions are particularly important for older people as they age and who, as a group, prefer walking as a form of physical activity. Urban form and socio-economic status (SES) can influence neighbourhood walking behaviour. The objectives of this study were: a) to examine how urban form and neighbourhood SES inter-relate to affect the experiences of older people who walk in their neighbourhoods; b) to examine differences among neighbourhood stakeholder key informant perspectives on socio-political processes that shape the walkability of neighbourhood environments.</p> <p>Methods</p> <p>An embedded comparative case study examined differences among four Ottawa neighbourhoods that were purposefully selected to provide contrasts on urban form (inner-urban versus suburban) and SES (higher versus lower). Qualitative data collected from 75 older walkers and 19 neighbourhood key informants, as well as quantitative indicators were compared on the two axes of urban form and SES among the four neighbourhoods.</p> <p>Results and discussion</p> <p>Examining the inter-relationship of neighbourhood SES and urban form characteristics on older people's walking experiences indicated that urban form differences were accentuated positively in higher SES neighbourhoods and negatively in lower SES neighbourhoods. Older people in lower SES neighbourhoods were more affected by traffic hazards and more reliant on public transit compared to their higher SES counterparts. In higher SES neighbourhoods the disadvantages of traffic in the inner-urban neighbourhood and lack of commercial destinations in the suburban neighbourhood were partially offset by other factors including neighbourhood aesthetics. Key informant descriptions of the socio-political process highlighted how lower SES neighbourhoods may face greater challenges in creating walkable places. These differences pertained to the size of neighbourhood associations, relationships with political representatives, accessing information and salient neighbourhood association issues. Findings provide evidence of inequitable walking environments.</p> <p>Conclusion</p> <p>Future research on walking must consider urban form-SES inter-relationships and further examine the equitable distribution of walking conditions as well as the socio-political processes driving these conditions. There is a need for municipal governments to monitor differences in walking conditions among higher and lower SES neighbourhoods, to be receptive to the needs of lower SES neighbourhood and to ensure that policy decisions are taken to address inequitable walking conditions.</p

    The pathophysiology of restricted repetitive behavior

    Get PDF
    Restricted, repetitive behaviors (RRBs) are heterogeneous ranging from stereotypic body movements to rituals to restricted interests. RRBs are most strongly associated with autism but occur in a number of other clinical disorders as well as in typical development. There does not seem to be a category of RRB that is unique or specific to autism and RRB does not seem to be robustly correlated with specific cognitive, sensory or motor abnormalities in autism. Despite its clinical significance, little is known about the pathophysiology of RRB. Both clinical and animal models studies link repetitive behaviors to genetic mutations and a number of specific genetic syndromes have RRBs as part of the clinical phenotype. Genetic risk factors may interact with experiential factors resulting in the extremes in repetitive behavior phenotypic expression that characterize autism. Few studies of individuals with autism have correlated MRI findings and RRBs and no attempt has been made to associate RRB and post-mortem tissue findings. Available clinical and animal models data indicate functional and structural alterations in cortical-basal ganglia circuitry in the expression of RRB, however. Our own studies point to reduced activity of the indirect basal ganglia pathway being associated with high levels of repetitive behavior in an animal model. These findings, if generalizable, suggest specific therapeutic targets. These, and perhaps other, perturbations to cortical basal ganglia circuitry are mediated by specific molecular mechanisms (e.g., altered gene expression) that result in long-term, experience-dependent neuroadaptations that initiate and maintain repetitive behavior. A great deal more research is needed to uncover such mechanisms. Work in areas such as substance abuse, OCD, Tourette syndrome, Parkinson’s disease, and dementias promise to provide findings critical for identifying neurobiological mechanisms relevant to RRB in autism. Moreover, basic research in areas such as birdsong, habit formation, and procedural learning may provide additional, much needed clues. Understanding the pathophysioloy of repetitive behavior will be critical to identifying novel therapeutic targets and strategies for individuals with autism

    A simultaneous assessment of CYP3A4 metabolism and induction in the DPX-2 cell line

    No full text
    The DPX-2 cell line, a derivative of HepG2 cells, harbors human PXR and a luciferase-linked CYP3A4 promoter. These cells were used in a panel of cell-based assays for a parallel assessment of CYP3A4 induction, metabolism, and inhibition at the cellular level. CYP3A4 induction in the DPX-2 cell line by various agents was monitored in 96-well plates by a luciferase-based transcriptional activation assay. Of the prototypical CYP3A4 inducers examined, all exhibited elevated luciferase activity in DPX-2 cells. CYP3A4 enzyme activity in noninduced and rifampicin-induced DPX-2 cells was also assessed using Vivid fluorogenic substrates. Significantly elevated CYP3A4 activity levels (2.8-fold ±0.2-fold above DMSO-treated cells) were found in DPX-2 cells after 48 hours of exposure to rifampicin, but were unde-tectable in parental HepG2 cells. Rifampicin-induced activity levels were found to be suitable for assessing the inhibitory potential of new chemical entities in downstream CYP3A4 inhibition assays. The elevated CYP3A4 activity was inhibited 85% by 10 μM ketoconazole. In addition, a cytotoxicity assay to correct for possible toxic effects of compounds at the cellular level was applied. The comparative data obtained with a combination of the above assays suggests that the application of several independent in vitro technologies used in DPX-2 cells is the best possible strategy for the assessment of the complex phenomena of CYP3A4 induction and inhibition

    Grasping motor impairments in autism: Not action planning but movement execution is deficient

    No full text
    Contains fulltext : 125501.pdf (publisher's version ) (Closed access)Different views on the origin of deficits in action chaining in autism spectrum disorders (ASD) have been posited, ranging from functional impairments in action planning to internal models supporting motor control. Thirty-one children and adolescents with ASD and twenty-nine matched controls participated in a two-choice reach-to-grasp paradigm wherein participants received cueing information indicating either the object location or the required manner of grasping. A similar advantage for location cueing over grip cueing was found in both groups. Both accuracy and reaction times of the ASD group were indistinguishable from the control group. In contrast, movement times of the ASD group were significantly delayed in comparison with controls. These findings suggest that movement execution rather than action planning is deficient in ASD, and that deficits in action chaining derive from impairments in internal action models supporting action execution
    corecore