17 research outputs found

    Conservative management of hostile bladders with intravesical botulinum toxin for successful renal transplantation

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Introduction: Renal transplant is the most desired and cost-effective therapy for patients with end stage renal disease. While a lower urinary tract cause of end-stage renal disease (ESRD) is not an absolute contraindication to renal transplantation, appropriate vesical storage and drainage is imperative for survival and function of the graft. It is crucial to address and resolve any urological causes of renal failure prior to transplantation to prevent subsequent graft failure. Most patients can be managed with conservative measures such as intermittent self-catheterization, but select cases may require more aggressive intervention including bladder augmentation or urinary diversion to address a hostile bladder environment prior to transplantation. To our knowledge, this is the first report of a poorly compliant bladder noted during pre-transplant evaluation that was managed conservatively with intravesical botulinum injections leading to a successful transplantation. Conclusion: We found through our experience that intravesical botulinum injections offers a conservative approach to increase bladder compliance and lower storage pressures thereby permitting safe renal transplantation. This management strategy can be employed in carefully selected patients who have failed oral anticholinergics and CIC, and wish to avoid bladder augmentation and urinary diversion. Careful follow-up is necessary to detect changes in urinary symptoms and bladder parameters, which may be a sign of possible botulinum failure necessitating the need to revisit more aggressive management options

    Mineralogical characterization of manganese oxide minerals of the Devonian Xialei manganese deposit

    Get PDF
    The Guangxi Zhuang Autonomous Region is an important manganese ore district in Southwest China, with manganese ore resource reserves accounting for 23% of the total manganese ore resource reserves in China. The Xialei manganese deposit (Daxin County, Guangxi) is the first super-large manganese deposit discovered in China. The Mn oxide in the supergene oxidation zone of the Xialei deposit was characterized using scanning electron microscopy (SEM), energy spectrometer (EDS), transmission electron microscopy (TEM, HRTEM), and X-ray diffraction analysis (XRD). The Mn oxides have a gray-black/steel-gray color, a semi-metallic-earthy luster, and appear as oolitic, pisolitic, banded, massive, and cellular textures. Scanning electron microscopy images show that the manganese oxide minerals are present as fine-spherical particles with an earthy surface. TEM and HRTEM indicate the presence of oriented bundled and staggered nanorods, and nanopores between the crystals. The Mn oxide ore can be classified into two textural types: (1) oolitic and pisolitic (often with annuli) Mn oxide, and (2) massive Mn oxide. Pyrolusite, cryptomelane, and hollandite are the main Mn oxide minerals. The potassium contents of cryptomelane and pyrolusite are discussed. The unit cell parameters of pyrolusite are refined

    Search for a W' Boson via the Decay Mode W' -> mu nu in 1.8 TeV p-pbar Collisions

    Full text link
    We report the results of a search for a W' boson produced in p-pbar collisions at a center-of-mass energy of 1.8 TeV using a 107 pb-1 data sample recorded by the Collider Detector at Fermilab. We consider the decay channel W' -> mu nu and search for anomalous production of high transverse mass mu-nu lepton pairs. We observe no excess of events above background and set limits on the rate of W' boson production and decay relative to Standard Model W boson production and decay using a fit of the transverse mass distribution observed. If we assume Standard Model strength couplings of the W' boson to quark and lepton pairs, we exclude a W' boson with invariant mass less than 660 GeV/c**2 at 95% confidence level.Comment: 19 pages, 2 figure

    Supergene Hydrous Sulfates in the Tuolugou Co-Au Deposit, Northern Qinghai–Tibet Plateau: Implications for Genetic Mechanism and Exploration

    No full text
    Supergene hydrous sulfate minerals form through the oxygenation and weathering of primary sulfides. In the Qinghai–Tibet Plateau region, with an alpine and dry environment, hydrous sulfate minerals oxidized from pyrite-bearing ore bodies provide important clues regarding the mineralization and environment. The Tuolugou sedimentary-exhalative (SEDEX) Co-Au deposit is located in the East Kunlun metallogenic belt of the northern Qinghai–Tibet Plateau in China. In the mining district, pyrite is the prevalent Co-hosting sulfide mineral, and is partially exposed on the surface to weathering and oxidation. Herein, we document the mineral assemblages in the supergene oxidation zone in the Tuolugou deposit, probe the genesis of supergene assemblage, and explore the implications for exploration. Three zones can be recognized in the oxidation zone of the Tuolugou deposit, including the outer zone (natrojarosite), intermediate zone (rozenite and aplowite), and inner zone (roemerite and melanterite). The mechanism of oxidation under aerobic and anaerobic conditions, as well as zoning with different oxidation degrees, are described in detail. Hydrous sulfates such as natrojarosite can be used as possible indicators of the exploration of albitite-related SEDEX deposit in this region

    The Application of EPMA in the Textural Characterization of Cryptomelane in the Xialei Manganese Deposit, Southwest Guangxi

    No full text
    BACKGROUND: OMS-2 has shown great significance in ion exchange, catalyst, energy and environment, but the research of natural OMS-2 mineral material cryptomelane is still lacking in the detailed characterization of the composition, structure and genetic research. Annulus and core-rim structures are representative in the structure of manganese oxide minerals. It is of great significance to clarify the mineral species and explore its composition characteristics, its origin and develop the application of manganese oxides. The Mn ore resource of Guangxi account for 23% of the manganese ore resource reserves in China. The Xialei Mn deposit located in Southwest Guangxi is the earliest super-large Mn deposit discovered in China, with an average grade of about 30% for the manganese oxide ore. OBJECTIVES: To explore the annulus and core-rim texture and its composition of cryptomelane in the Xialei Mn deposit.METHODS: Quantitative analysis and element mapping of EPMA and microscopy were carried out.RESULTS: The element intensity of the cryptomelane with annulus texture was Mn, K, Mg, Al, Zn, Ba, P, Fe in order of average from strong to weak. The average element intensity of the cryptomelane with core-rim texture was Mn, K, Ca, Mg, Zn, Ba, P, Fe from strong to weak. The K content gradually increased (2.31%-4.17%, 0.38-0.62 atoms per formula unit) from the middle to the rim of the cryptomelane, indicating K enrichment during oxidization and the stable status of Mn oxides.CONCLUSIONS: The change in the trend of K and Mn ions is the direct cause of the formation of the annulus and core-rim texture, reflecting the changes of oxidation environment. Potassium content gradually increases from the inner to outer zone, which may indicate the enrichment of potassium during the oxidation process, and also reflects manganese oxide gradually tending to the most stable state

    Manganese Oxide Minerals from the Xiangtan Manganese Deposit in South China and Their Application in Formaldehyde Removal

    No full text
    Because of the nano-scale tunnel constructed by the active Mn-O octahedron in cryptomelane, cryptomelane-type manganese oxides have high activity in the oxidation of several volatile organic compounds (VOCs). Natural cryptomelane, in the form of supergene oxide manganese ore, carpets much of South China. In the lower part of the Datangpo Formation of Nanhua System on the southeastern Yangtze Platform, cryptomelane is one of the major manganese oxides in black shale of the Xiangtan manganese deposit in this deposit. Formaldehyde is a dominant indoor pollutant among volatile organic compounds (VOCs), and applications of synthetic cryptomelane have been reported to eliminate it. To study the removal capacity of naturally outcropping cryptomelane, representative samples of manganese oxide (the primary mineral component of cryptomelane) from the Xiangtan Mn deposit were analyzed in this study. The chemical composition, crystal structure and micromorphology of the manganese oxide minerals were explored using ICP-AES, XRD, EPMA, SEM and HR-TEM techniques. Fine-grained and poorly crystalline, these minerals consist primarily of cryptomelane, along with minor amounts of pyrolusite, hollandite, lithiophorite, limonite and quartz. Natural cryptomelane is a monoclinic crystal, and its cell parameters are refined. The results of catalytic tests revealed that natural cryptomelane has obvious catalytic activity in the oxidation of formaldehyde in a static environment under room temperature. This study may provide a natural mineral material as an inexpensive and efficient catalyst for the purification of formaldehyde in industrial or indoor air treatment

    Mechanism of Decarboxylation of Pyruvic Acid in the Presence of Hydrogen Peroxide

    No full text
    The purpose of this work was to probe the rate and mechanism of rapid decarboxylation of pyruvic acid in the presence of hydrogen peroxide (H2O2) to acetic acid and carbon dioxide over the pH range 2-9 at 25°C, utilizing UV spectrophotometry, high performance liquid chromatography (HPLC), and proton and carbon nuclear magnetic resonance spectrometry (1H, 13C-NMR). Changes in UV absorbance at 220 nm were used to determine the kinetics as the reaction was too fast to follow by HPLC or NMR in much of the pH range. The rate constants for the reaction were determined in the presence of molar excess of H2O2 resulting in pseudo first-order kinetics. No buffer catalysis was observed. The calculated second-order rate constants for the reaction followed a sigmoidal shape with pH-independent regions below pH 3 and above pH 7 but increased between pH 4 and 6. Between pH 4 and 9, the results were in agreement with a change from rate-determining nucleophilic attack of the deprotonated peroxide species, HOO-, on the α-carbonyl group followed by rapid decarboxylation at pH values below 6 to rate-determining decarboxylation above pH 7. The addition of H2O2 to ethyl pyruvate was also characterized

    Analysis of N1-acetyl-N2-formyl-5-methoxykynuramine/N1-acetyl-5-methoxy-kynuramine formation from melatonin in mice

    No full text
    The interactions of melatonin, a potent endogenous antioxidant, with reactive oxygen species generate several products that include N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) and N(1)-acetyl-5-methoxy-kynuramine (AMK). The physiological or pathological significance of AFMK/AMK formation during the process of melatonin metabolism in mammals has not been clarified. Using a metabolomic approach in the current study, the AFMK/AMK pathway was thoroughly investigated both in mice and humans. Unexpectedly, AFMK and AMK were not identified in the urine of humans nor in the urine, feces or tissues (including liver, brain, and eyes) in mice under the current experimental conditions. Metabolomic analysis did identify novel metabolites of AMK, i.e. hydroxy-AMK and glucuronide-conjugated hydroxy-AMK. These two newly identified metabolites were, however, not found in the urine of humans. In addition, oxidative stress induced by acetaminophen in the mouse model did not boost AFMK/AMK formation. These data suggest that AFMK/AMK formation is not a significant pathway of melatonin disposition in mice, even under conditions of oxidative stress
    corecore