2,870 research outputs found
Dynamical approach to heavy-ion induced fission using actinide target nuclei at energies around the Coulomb barrier
In order to describe heavy-ion fusion reactions around the Coulomb barrier
with an actinide target nucleus, we propose a model which combines the
coupled-channels approach and a fluctuation-dissipation model for dynamical
calculations. This model takes into account couplings to the collective states
of the interacting nuclei in the penetration of the Coulomb barrier and the
subsequent dynamical evolution of a nuclear shape from the contact
configuration. In the fluctuation-dissipation model with a Langevin equation,
the effect of nuclear orientation at the initial impact on the prolately
deformed target nucleus is considered. Fusion-fission, quasi-fission and deep
quasi-fission are separated as different Langevin trajectories on the potential
energy surface. Using this model, we analyze the experimental data for the mass
distribution of fission fragments (MDFF) in the reactions of
S+U and Si+U at several incident energies
around the Coulomb barrier. We find that the time scale in the quasi-fission as
well as the deformation of fission fragments at the scission point are
different between the Si+U and S+U systems,
causing different mass asymmetries of the quasi-fission.Comment: 11 figure
High--Energy Photon--Hadron Scattering in Holographic QCD
This article provides an in-depth look at hadron high energy scattering by
using gravity dual descriptions of strongly coupled gauge theories. Just like
deeply inelastic scattering (DIS) and deeply virtual Compton scattering (DVCS)
serve as clean experimental probes into non-perturbative internal structure of
hadrons, elastic scattering amplitude of a hadron and a (virtual) "photon" in
gravity dual can be exploited as a theoretical probe. Since the scattering
amplitude at sufficiently high energy (small Bjorken x) is dominated by parton
contributions (= Pomeron contributions) even in strong coupling regime, there
is a chance to learn a lesson for generalized parton distribution (GPD) by
using gravity dual models. We begin with refining derivation of
Brower-Polchinski-Strassler-Tan (BPST) Pomeron kernel in gravity dual, paying
particular attention to the role played by complex spin variable j. The BPST
Pomeron on warped spacetime consists of a Kaluza-Klein tower of 4D Pomerons
with non-linear trajectories, and we clarify the relation between Pomeron
couplings and Pomeron form factor. We emphasize that the saddle point value j^*
of the scattering amplitude in the complex j-plane representation is a very
important concept in understanding qualitative behavior of the scattering
amplitude. The total Pomeron contribution to the scattering is decomposed into
the saddle point contribution and at most a finite number of pole
contributions, and when the pole contributions are absent (which we call saddle
point phase), kinematical variable (q,x,t) dependence of ln (1/q) evolution and
ln(1/x) evolution parameters gamma_eff. and lambda_eff. in DIS and t-slope
parameter B of DVCS in HERA experiment are all reproduced qualitatively in
gravity dual
Electric-field-induced lifting of the valley degeneracy in alpha-(BEDT-TTF)_2I_3 Dirac-like Landau levels
The relativistic Landau levels in the layered organic material
alpha-(BEDT-TTF)_2I_3 [BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] are
sensitive to the tilt of the Dirac cones, which, as in the case of graphene,
determine the low-energy electronic properties under appropriate pressure. We
show that an applied inplane electric field, which happens to be in competition
with the tilt of the cones, lifts the twofold valley degeneracy due to a
different level spacing. The scenario may be tested in infrared transmission
spectroscopy.Comment: 4 pages, 1 figure; version with minor corrections published in EP
Static and Dynamic Phases for Vortex Matter with Attractive Interactions
Exotic vortex states with long range attraction and short range repulsion
have recently been proposed to arise in superconducting hybrid structures and
multi-band superconductors. Using large scale simulations we examine the static
and dynamic properties of such vortex states interacting with random and
periodic pinning. In the absence of pinning this system does not form patterns
but instead completely phase separates. When pinning is present there is a
transition from inhomogeneous to homogeneous vortex configurations similar to a
wetting phenomenon. Under an applied drive, a dynamical dewetting process can
occur from a strongly pinned homogeneous state into pattern forming states. We
show that a signature of the exotic vortex interactions under transport
measurements is a robust double peak feature in the differential conductivity
curves.Comment: 5 pages, 4 postscript figure
High energy electrons beyond 100 GEV observed by emulsion chamber
Much efforts have been expended to observe the spectrum of electrons in the high energy region with large area emulsion chambers exposed at balloon altitudes, and now 15 electrons beyond 1 TeV have been observed. The observed integral flux at 1 TeV is (3.24 + or - 0.87)x10(-5)/sq m sec sr. The statistics of the data around a few hundred GeV are also improving by using new shower detecting films of high sensitivity. The astrophysical significance of the observed spectrum are discussed for the propagation of electrons based on the leaky box and the nested leaky box model
Telenoid android robot as an embodied perceptual social regulation medium engaging natural human–humanoid interaction
The present paper aims to validate our research on human–humanoid interaction (HHI) using the
minimalist humanoid robot Telenoid. We conducted the human–robot interaction test with 142 young people who had no prior interaction experience with this robot. The main goal is the analysis of the two social dimensions (‘‘Perception’’ and ‘‘Believability’’) useful for increasing the natural behaviour between users and Telenoid.Weadministered our custom questionnaire to human subjects in association with a well defined experimental setting (‘‘ordinary and goal-guided task’’). A thorough analysis of the questionnaires has been carried out and reliability and internal consistency in correlation between the multiple items has been calculated. Our experimental results show that the perceptual behaviour and believability, as implicit social competences, could improve the meaningfulness and the natural-like sense of human–humanoid interaction in everyday life task-driven activities. Telenoid is perceived as an autonomous cooperative agent for a shared environment by human beings
Type-1.5 Superconductors
We demonstrate the existence of a novel superconducting state in high quality
two-component MgB2 single crystalline superconductors where a unique
combination of both type-1 (kappa_1 0.707)
superconductor conditions is realized for the two components of the order
parameter. This condition leads to a vortex-vortex interaction attractive at
long distances and repulsive at short distances, which stabilizes
unconventional stripe- and gossamer-like vortex patterns that we have
visualized in this type-1.5 superconductor using Bitter decoration and also
reproduced in numerical simulations.Comment: accepted in Phys. Rev. Let
Dual Spin Filter Effect in a Zigzag Graphene Nanoribbon
By first principle calculations, a dual spin filter effect under finite bias
voltages is demonstrated in an antiferromagnetic junction of symmetric zigzag
graphene nanoribbon (ZGNR). Unlike conventional spin filter devices using half
metallic materials, the up- and down-spin electrons are unidirectionally
filtered in the counter direction of the bias voltage, making the junction a
dual spin filter. On the contrary, asymmetric ZGNRs do not exhibit such a spin
filter effect. By analyzing Wannier functions and a tight-binding model, we
clarify that an interplay between the spin polarized band structure of
and states near the Fermi level and decoupling of the interband hopping
of the two states, arising from the symmetry of the wave functions, plays a
crucial role in the effect.Comment: 15 pages, 4 figure
- …