150 research outputs found

    Reducing Microvascular Dysfunction in Revascularized Patients with ST-Elevation Myocardial Infarction by Off-Target Properties of Ticagrelor versus Prasugrel. Rationale and Design of the REDUCE-MVI Study

    Get PDF
    Microvascular injury is present in a large proportion of patients with ST-elevation myocardial infarction (STEMI) despite successful revascularization. Ticagrelor potentially mitigates this process by exerting additional adenosine-mediated effects. This study aims to determine whether ticagrelor is associated with a better microvascular function compared to prasugrel as maintenance therapy after STEMI. A total of 110 patients presenting with STEMI and additional intermediate stenosis in another coronary artery will be studied after successful percutaneous coronary intervention (PCI) of the infarct-related artery. Patients will be randomized to treatment with ticagrelor or prasugrel for 1 year. FFR-guided PCI of the non-infarct-related artery will be performed at 1 month. Microvascular function will be assessed by measurement of the index of microcirculatory resistance (IMR) in the infarct-related artery and non-infarct-related artery, immediately after primary PCI and after 1 month. The REDUCE-MVI study will establish whether ticagrelor as a maintenance therapy may improve microvascular function in patients after revascularized STEMI

    Asymmetric Dimethylarginine, Endothelial Nitric Oxide Bioavailability and Mortality in Sepsis

    Get PDF
    Background: Plasma concentrations of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxidesynthase, are raised in patients with chronic vascular disease, causing increased cardiovascular risk and endothelialdysfunction, but the role of ADMA in acute inflammatory states is less well defined.Methods and Results: In a prospective longitudinal study in 67 patients with acute sepsis and 31 controls, digitalmicrovascular reactivity was measured by peripheral arterial tonometry and blood was collected at baseline and 2–4 dayslater. Plasma ADMA and L-arginine concentrations were determined by high performance liquid chromatography. Baselineplasma L-arginine: ADMA ratio was significantly lower in sepsis patients (median [IQR] 63 [45–103]) than in hospital controls(143 [123–166], p,0.0001) and correlated with microvascular reactivity (r = 0.34, R2 = 0.12, p = 0.02). Baseline plasma ADMAwas independently associated with 28-day mortality (Odds ratio [95% CI] for death in those in the highest quartile($0.66 mmol/L) = 20.8 [2.2–195.0], p = 0.008), and was independently correlated with severity of organ failure. Increase inADMA over time correlated with increase in organ failure and decrease in microvascular reactivity.Conclusions: Impaired endothelial and microvascular function due to decreased endothelial NO bioavailability is a potentialmechanism linking increased plasma ADMA with organ failure and death in sepsis

    Platelet Inhibition, Endothelial Function, and Clinical Outcome in Patients Presenting With ST-Segment-Elevation Myocardial Infarction Randomized to Ticagrelor Versus Prasugrel Maintenance Therapy: Long-Term Follow-Up of the REDUCE-MVI Trial

    Get PDF
    Background Off-target properties of ticagrelor might reduce microvascular injury and improve clinical outcome in patients with ST-segment-elevation myocardial infarction. The REDUCE-MVI (Evaluation of Microvascular Injury in Revascularized Patients with ST-Segment-Elevation Myocardial Infarction Treated With Ticagrelor Versus Prasugrel) trial reported no benefit of ticagrelor regarding microvascular function at 1 month. We now present the follow-up data up to 1.5 years. Methods and Results We randomized 110 patients with ST-segment-elevation myocardial infarction to either ticagrelor 90 mg twice daily or prasugrel 10 mg once a day. Platelet inhibition and peripheral endothelial function measurements includi

    Characterisation of metabolites of the putative cancer chemopreventive agent quercetin and their effect on cyclo-oxygenase activity

    Get PDF
    Quercetin (3,5,7,3′,4′-pentahydroxyflavone) is a flavone with putative ability to prevent cancer and cardiovascular diseases. Its metabolism was evaluated in rats and human. Rats received quercetin via the intravenous (i.v.) route and metabolites were isolated from the plasma, urine and bile. Analysis was by high-performance liquid chromatography and confirmation of species identity was achieved by mass spectrometry. Quercetin and isorhamnetin, the 3′-O-methyl analogue, were found in both the plasma and urine. In addition, several polar peaks were characterised as sulphated and glucuronidated conjugates of quercetin and isorhamnetin. Extension of the metabolism studies to a cancer patient who had received quercetin as an i.v. bolus showed that (Quercetin removed) isorhamnetin and quercetin 3′-O-sulphate were major plasma metabolites. As a catechol, quercetin can potentially be converted to a quinone and subsequently conjugated with glutathione (GSH). Oxidation of quercetin with mushroom tyrosinase in the presence of GSH furnished GSH conjugates of quercetin, two mono- and one bis-substituted conjugates. However, these species were not found in biomatrices in rats treated with quercetin. As cyclo-oxygenase-2 (COX-2) expression is mechanistically linked to carcinogenesis, we examined whether quercetin and its metabolites can inhibit COX-2 in a human colorectal cancer cell line (HCA-7). Isorhamnetin and its 4′-isomer tamarixetin were potent inhibitors, reflected in a 90% decrease in prostaglandin E-2 (PGE-2) levels, a marker of COX-2 activity. Quercetin was less effective, with a 50% decline. Quercetin 3- and 7-O-sulphate had no effect on PGE-2. The results indicate that quercetin may exert its pharmacological effects, at least in part, via its metabolites

    Single and repeated moderate consumption of native or dealcoholized red wine show different effects on antioxidant parameters in blood and DNA strand breaks in peripheral leukocytes in healthy volunteers: a randomized controlled trial [ISRCTN68505294]

    Get PDF
    BACKGROUND: Red wine (RW) is rich in antioxidant polyphenols that might protect from oxidative stress related diseases, such as cardiovascular disease and cancer. Antioxidant effects after single ingestion of RW or dealcoholized RW (DRW) have been observed in several studies, but results after regular consumption are contradictory. Thus, we examined if single or repeated consumption of moderate amounts of RW or DRW exert antioxidant activity in vivo. METHODS: Total phenolic content and concentration of other antioxidants in plasma/serum, total antioxidant capacity (TEAC) in plasma as well as DNA strand breaks in peripheral leukocytes were measured in healthy non-smokers A) before, 90 and 360 min after ingestion of one glass of RW, DRW or water; B) before and after consumption of one glass of RW or DRW daily for 6 weeks. DNA strand breaks (SB) were determined by single cell gel electrophoresis (Comet Assay) in untreated cells and after induction of oxidative stress ex vivo with H(2)O(2 )(300 μM, 20 min). RESULTS: Both RW and DRW transiently increased total phenolic content in plasma after single consumption, but only RW lead to a sustained increase if consumed regularly. Plasma antioxidant capacity was not affected by single or regular consumption of RW or DRW. Effects of RW and DRW on DNA SB were conflicting. DNA strand breaks in untreated cells increased after a single dose of RW and DRW, whereas H(2)O(2 )induced SB were reduced after DRW. In contrast, regular RW consumption reduced SB in untreated cells but did not affect H(2)O(2 )induced SB. CONCLUSION: The results suggest that consumption of both RW and DRW leads to an accumulation of phenolic compounds in plasma without increasing plasma antioxidant capacity. Red wine and DRW seem to affect the occurrence of DNA strand breaks, but this cannot be referred to antioxidant effects

    Coronary microvascular resistance: methods for its quantification in humans

    Get PDF
    Coronary microvascular dysfunction is a topic that has recently gained considerable interest in the medical community owing to the growing awareness that microvascular dysfunction occurs in a number of myocardial disease states and has important prognostic implications. With this growing awareness, comes the desire to accurately assess the functional capacity of the coronary microcirculation for diagnostic purposes as well as to monitor the effects of therapeutic interventions that are targeted at reversing the extent of coronary microvascular dysfunction. Measurements of coronary microvascular resistance play a pivotal role in achieving that goal and several invasive and noninvasive methods have been developed for its quantification. This review is intended to provide an update pertaining to the methodology of these different imaging techniques, including the discussion of their strengths and weaknesses

    3′,4′-Dihydroxyflavonol Antioxidant Attenuates Diastolic Dysfunction and Cardiac Remodeling in Streptozotocin-Induced Diabetic m(Ren2)27 Rats

    Get PDF
    Diabetic cardiomyopathy (DCM) is an increasingly recognized cause of chronic heart failure amongst diabetic patients. Both increased reactive oxygen species (ROS) generation and impaired ROS scavenging have been implicated in the pathogenesis of hyperglycemia-induced left ventricular dysfunction, cardiac fibrosis, apoptosis and hypertrophy. We hypothesized that 3',4'-dihydroxyflavonol (DiOHF), a small highly lipid soluble synthetic flavonol, may prevent DCM by scavenging ROS, thus preventing ROS-induced cardiac damage.Six week old homozygous Ren-2 rats were randomized to receive either streptozotocin or citrate buffer, then further randomized to receive either DiOHF (1 mg/kg/day) by oral gavage or vehicle for six weeks. Cardiac function was assessed via echocardiography and left ventricular cardiac catheterization before the animals were sacrificed and hearts removed for histological and molecular analyses. Diabetic Ren-2 rats showed evidence of diastolic dysfunction with prolonged deceleration time, reduced E/A ratio, and increased slope of end-diastolic pressure volume relationship (EDPVR) in association with marked interstitial fibrosis and oxidative stress (all P<0.05 vs control Ren-2). Treatment with DiOHF prevented the development of diastolic dysfunction and was associated with reduced oxidative stress and interstitial fibrosis (all P<0.05 vs untreated diabetic Ren-2 rats). In contrast, few changes were seen in non-diabetic treated animals compared to untreated counterparts.Inhibition of ROS production and action by DiOHF improved diastolic function and reduced myocyte hypertrophy as well as collagen deposition. These findings suggest the potential clinical utility of antioxidative compounds such as flavonols in the prevention of diabetes-associated cardiac dysfunction
    corecore