1,493 research outputs found

    Conducting-angle-based percolation in the XY model

    Get PDF
    We define a percolation problem on the basis of spin configurations of the two dimensional XY model. Neighboring spins belong to the same percolation cluster if their orientations differ less than a certain threshold called the conducting angle. The percolation properties of this model are studied by means of Monte Carlo simulations and a finite-size scaling analysis. Our simulations show the existence of percolation transitions when the conducting angle is varied, and we determine the transition point for several values of the XY coupling. It appears that the critical behavior of this percolation model can be well described by the standard percolation theory. The critical exponents of the percolation transitions, as determined by finite-size scaling, agree with the universality class of the two-dimensional percolation model on a uniform substrate. This holds over the whole temperature range, even in the low-temperature phase where the XY substrate is critical in the sense that it displays algebraic decay of correlations.Comment: 16 pages, 14 figure

    Exact characterization of O(n) tricriticality in two dimensions

    Full text link
    We propose exact expressions for the conformal anomaly and for three critical exponents of the tricritical O(n) loop model as a function of n in the range −2≤n≤3/2-2 \leq n \leq 3/2. These findings are based on an analogy with known relations between Potts and O(n) models, and on an exact solution of a 'tri-tricritical' Potts model described in the literature. We verify the exact expressions for the tricritical O(n) model by means of a finite-size scaling analysis based on numerical transfer-matrix calculations.Comment: submitted to Phys. Rev. Let

    Phase Diagram of a Loop on the Square Lattice

    Full text link
    The phase diagram of the O(n) model, in particular the special case n=0n=0, is studied by means of transfer-matrix calculations on the loop representation of the O(n) model. The model is defined on the square lattice; the loops are allowed to collide at the lattice vertices, but not to intersect. The loop model contains three variable parameters that determine the loop density or temperature, the energy of a bend in a loop, and the interaction energy of colliding loop segments. A finite-size analysis of the transfer-matrix results yields the phase diagram in a special plane of the parameter space. These results confirm the existence of a multicritical point and an Ising-like critical line in the low-temperature O(n) phase.Comment: LaTeX, 3 eps file

    First and second order transitions in dilute O(n) models

    Full text link
    We explore the phase diagram of an O(n) model on the honeycomb lattice with vacancies, using finite-size scaling and transfer-matrix methods. We make use of the loop representation of the O(n) model, so that nn is not restricted to positive integers. For low activities of the vacancies, we observe critical points of the known universality class. At high activities the transition becomes first order. For n=0 the model includes an exactly known theta point, used to describe a collapsing polymer in two dimensions. When we vary nn from 0 to 1, we observe a tricritical point which interpolates between the universality classes of the theta point and the Ising tricritical point.Comment: LaTeX, 6 eps file

    Exact valence bond entanglement entropy and probability distribution in the XXX spin chain and the Potts model

    Get PDF
    By relating the ground state of Temperley-Lieb hamiltonians to partition functions of 2D statistical mechanics systems on a half plane, and using a boundary Coulomb gas formalism, we obtain in closed form the valence bond entanglement entropy as well as the valence bond probability distribution in these ground states. We find in particular that for the XXX spin chain, the number N_c of valence bonds connecting a subsystem of size L to the outside goes, in the thermodynamic limit, as = (4/pi^2) ln L, disproving a recent conjecture that this should be related with the von Neumann entropy, and thus equal to 1/(3 ln 2) ln L. Our results generalize to the Q-state Potts model.Comment: 4 pages, 2 figure

    End to end distance on contour loops of random gaussian surfaces

    Full text link
    A self consistent field theory that describes a part of a contour loop of a random Gaussian surface as a trajectory interacting with itself is constructed. The exponent \nu characterizing the end to end distance is obtained by a Flory argument. The result is compared with different previuos derivations and is found to agree with that of Kondev and Henley over most of the range of the roughening exponent of the random surface.Comment: 7 page

    Angular spectrum of quantized light beams

    Full text link
    We introduce a generalized angular spectrum representation for quantized light beams. By using our formalism, we are able to derive simple expressions for the electromagnetic vector potential operator in the case of: {a)} time-independent paraxial fields, {b)} time-dependent paraxial fields, and {c)} non-paraxial fields. For the first case, the well known paraxial results are fully recovered.Comment: 3 pages, no figure

    A constrained Potts antiferromagnet model with an interface representation

    Full text link
    We define a four-state Potts model ensemble on the square lattice, with the constraints that neighboring spins must have different values, and that no plaquette may contain all four states. The spin configurations may be mapped into those of a 2-dimensional interface in a 2+5 dimensional space. If this interface is in a Gaussian rough phase (as is the case for most other models with such a mapping), then the spin correlations are critical and their exponents can be related to the stiffness governing the interface fluctuations. Results of our Monte Carlo simulations show height fluctuations with an anomalous dependence on wavevector, intermediate between the behaviors expected in a rough phase and in a smooth phase; we argue that the smooth phase (which would imply long-range spin order) is the best interpretation.Comment: 61 pages, LaTeX. Submitted to J. Phys.

    Geometric phases in astigmatic optical modes of arbitrary order

    Full text link
    The transverse spatial structure of a paraxial beam of light is fully characterized by a set of parameters that vary only slowly under free propagation. They specify bosonic ladder operators that connect modes of different order, in analogy to the ladder operators connecting harmonic-oscillator wave functions. The parameter spaces underlying sets of higher-order modes are isomorphic to the parameter space of the ladder operators. We study the geometry of this space and the geometric phase that arises from it. This phase constitutes the ultimate generalization of the Gouy phase in paraxial wave optics. It reduces to the ordinary Gouy phase and the geometric phase of non-astigmatic optical modes with orbital angular momentum states in limiting cases. We briefly discuss the well-known analogy between geometric phases and the Aharonov-Bohm effect, which provides some complementary insights in the geometric nature and origin of the generalized Gouy phase shift. Our method also applies to the quantum-mechanical description of wave packets. It allows for obtaining complete sets of normalized solutions of the Schr\"odinger equation. Cyclic transformations of such wave packets give rise to a phase shift, which has a geometric interpretation in terms of the other degrees of freedom involved.Comment: final versio
    • …
    corecore