3,897 research outputs found

    Experience of the University of Pittsburgh, Pittsburgh, Pennsylvnaia, USA

    Get PDF

    Applying Grover's algorithm to AES: quantum resource estimates

    Full text link
    We present quantum circuits to implement an exhaustive key search for the Advanced Encryption Standard (AES) and analyze the quantum resources required to carry out such an attack. We consider the overall circuit size, the number of qubits, and the circuit depth as measures for the cost of the presented quantum algorithms. Throughout, we focus on Clifford+T+T gates as the underlying fault-tolerant logical quantum gate set. In particular, for all three variants of AES (key size 128, 192, and 256 bit) that are standardized in FIPS-PUB 197, we establish precise bounds for the number of qubits and the number of elementary logical quantum gates that are needed to implement Grover's quantum algorithm to extract the key from a small number of AES plaintext-ciphertext pairs.Comment: 13 pages, 3 figures, 5 tables; to appear in: Proceedings of the 7th International Conference on Post-Quantum Cryptography (PQCrypto 2016

    Addressing Security Properties in Systems of Systems: Challenges and Ideas

    Get PDF
    Within growing pervasive information systems, Systems of Systems (SoS) emerge as a new research frontier. A SoS is formed by a set of constituent systems that live on their own with well-established functionalities and requirements, and, in certain circumstances, they must collaborate to achieve a common mission. In this scenario, security is one crucial property that needs to be considered since the early stages of SoS lifecycle. Unfortunately, SoS security cannot be guaranteed by addressing the security of each constituent system separately. The aim of this paper is to discuss the challenges faced in addressing the security of SoS and to propose some research ideas centered around the notion of a mission to be carried out by the SoS.Ministerio dell'Universitá e della Ricerca (Italia) GAUSS 2015KWREMXMinisterio de Economía y Competitividad TIN2016-76956-C3-2-R (POLOLAS

    Algebraic Approach to Interacting Quantum Systems

    Full text link
    We present an algebraic framework for interacting extended quantum systems to study complex phenomena characterized by the coexistence and competition of different states of matter. We start by showing how to connect different (spin-particle-gauge) {\it languages} by means of exact mappings (isomorphisms) that we name {\it dictionaries} and prove a fundamental theorem establishing when two arbitrary languages can be connected. These mappings serve to unravel symmetries which are hidden in one representation but become manifest in another. In addition, we establish a formal link between seemingly unrelated physical phenomena by changing the language of our model description. This link leads to the idea of {\it universality} or equivalence. Moreover, we introduce the novel concept of {\it emergent symmetry} as another symmetry guiding principle. By introducing the notion of {\it hierarchical languages}, we determine the quantum phase diagram of lattice models (previously unsolved) and unveil hidden order parameters to explore new states of matter. Hierarchical languages also constitute an essential tool to provide a unified description of phases which compete and coexist. Overall, our framework provides a simple and systematic methodology to predict and discover new kinds of orders. Another aspect exploited by the present formalism is the relation between condensed matter and lattice gauge theories through quantum link models. We conclude discussing applications of these dictionaries to the area of quantum information and computation with emphasis in building new models of computation and quantum programming languages.Comment: 44 pages, 14 psfigures. Advances in Physics 53, 1 (2004

    Operator entanglement of two-qubit joint unitary operations revisited: Schmidt number approach

    Full text link
    Operator entanglement of two-qubit joint unitary operations is revisited. Schmidt number is an important attribute of a two-qubit unitary operation, and may have connection with the entanglement measure of the unitary operator. We found the entanglement measure of two-qubit unitary operators is classified by the Schmidt number of the unitary operators. The exact relation between the operator entanglement and the parameters of the unitary operator is clarified too.Comment: To appear in the Brazilian Journal of Physic

    Fidelity of optimally controlled quantum gates with randomly coupled multiparticle environments

    Full text link
    This work studies the feasibility of optimal control of high-fidelity quantum gates in a model of interacting two-level particles. One particle (the qubit) serves as the quantum information processor, whose evolution is controlled by a time-dependent external field. The other particles are not directly controlled and serve as an effective environment, coupling to which is the source of decoherence. The control objective is to generate target one-qubit gates in the presence of strong environmentally-induced decoherence and under physically motivated restrictions on the control field. It is found that interactions among the environmental particles have a negligible effect on the gate fidelity and require no additional adjustment of the control field. Another interesting result is that optimally controlled quantum gates are remarkably robust to random variations in qubit-environment and inter-environment coupling strengths. These findings demonstrate the utility of optimal control for management of quantum-information systems in a very precise and specific manner, especially when the dynamics complexity is exacerbated by inherently uncertain environmental coupling.Comment: tMOP LaTeX, 9 pages, 3 figures; Special issue of the Journal of Modern Optics: 37th Winter Colloquium on the Physics of Quantum Electronics, 2-6 January 200

    Renormalisation of heavy-light light ray operators

    Full text link
    We calculate the renormalisation of different light ray operators with one light degree of freedom and a static heavy quark. Both 2→22\to2- and 2→32\to3-kernels are considered. A comparison with the light-light case suggests that the mixing with three-particle operators is solely governed by the light degrees of freedom. Additionally we show that conformal symmetry is already broken at the level of the one loop counterterms due to the additional UV-renormalisation of a cusp in the two contributing Wilson-lines. This general feature can be used to fix the 2→22\to2-renormalisation kernels up to a constant. Some examples for applications of our results are given.Comment: 23 pages, 5 figures; v2: changed some wording, added a few references and one appendix concerning some subtleties related to gauge fixing and ghost terms; v3: clarified calculation in section 3.2., added an explicit calculation in section 5.2, corrected a few typos and one figure, added a few comments, results unchanged, except for typesetting matches version to appear in JHE

    Species Doublers as Super Multiplets in Lattice Supersymmetry: Exact Supersymmetry with Interactions for D=1 N=2

    Full text link
    We propose a new lattice superfield formalism in momentum representation which accommodates species doublers of the lattice fermions and their bosonic counterparts as super multiplets. We explicitly show that one dimensional N=2 model with interactions has exact Lie algebraic supersymmetry on the lattice for all super charges. In coordinate representation the finite difference operator is made to satisfy Leibnitz rule by introducing a non local product, the ``star'' product, and the exact lattice supersymmetry is realized. The standard momentum conservation is replaced on the lattice by the conservation of the sine of the momentum, which plays a crucial role in the formulation. Half lattice spacing structure is essential for the one dimensional model and the lattice supersymmetry transformation can be identified as a half lattice spacing translation combined with alternating sign structure. Invariance under finite translations and locality in the continuum limit are explicitly investigated and shown to be recovered. Supersymmetric Ward identities are shown to be satisfied at one loop level. Lie algebraic lattice supersymmetry algebra of this model suggests a close connection with Hopf algebraic exactness of the link approach formulation of lattice supersymmetry.Comment: 34 pages, 2 figure

    Measuring measurement

    Full text link
    Measurement connects the world of quantum phenomena to the world of classical events. It plays both a passive role, observing quantum systems, and an active one, preparing quantum states and controlling them. Surprisingly - in the light of the central status of measurement in quantum mechanics - there is no general recipe for designing a detector that measures a given observable. Compounding this, the characterization of existing detectors is typically based on partial calibrations or elaborate models. Thus, experimental specification (i.e. tomography) of a detector is of fundamental and practical importance. Here, we present the realization of quantum detector tomography: we identify the optimal positive-operator-valued measure describing the detector, with no ancillary assumptions. This result completes the triad, state, process, and detector tomography, required to fully specify an experiment. We characterize an avalanche photodiode and a photon number resolving detector capable of detecting up to eight photons. This creates a new set of tools for accurately detecting and preparing non-classical light.Comment: 6 pages, 4 figures,see video abstract at http://www.quantiki.org/video_abstracts/0807244

    SN 2005hj: Evidence for Two Classes of Normal-Bright SNe Ia and Implications for Cosmology

    Get PDF
    HET Optical spectra covering the evolution from about 6 days before to about 5 weeks after maximum light and the ROTSE-IIIb unfiltered light curve of the "Branch-normal" Type Ia Supernova SN 2005hj are presented. The host galaxy shows HII region lines at redshift of z=0.0574, which puts the peak unfiltered absolute magnitude at a somewhat over-luminous -19.6. The spectra show weak and narrow SiII lines, and for a period of at least 10 days beginning around maximum light these profiles do not change in width or depth and they indicate a constant expansion velocity of ~10,600 km/s. We analyzed the observations based on detailed radiation dynamical models in the literature. Whereas delayed detonation and deflagration models have been used to explain the majority of SNe Ia, they do not predict a long velocity plateau in the SiII minimum with an unvarying line profile. Pulsating delayed detonations and merger scenarios form shell-like density structures with properties mostly related to the mass of the shell, M_shell, and we discuss how these models may explain the observed SiII line evolution; however, these models are based on spherical calculations and other possibilities may exist. SN 2005hj is consistent with respect to the onset, duration, and velocity of the plateau, the peak luminosity and, within the uncertainties, with the intrinsic colors for models with M_shell=0.2 M_sun. Our analysis suggests a distinct class of events hidden within the Branch-normal SNe Ia. If the predicted relations between observables are confirmed, they may provide a way to separate these two groups. We discuss the implications of two distinct progenitor classes on cosmological studies employing SNe Ia, including possible differences in the peak luminosity to light curve width relation.Comment: ApJ accepted, 31 page
    • …
    corecore