40 research outputs found

    Enabling Science Support for Better Decision‐Making when Responding to Chemical Spills

    No full text
    Chemical spills and accidents contaminate the environment and disrupt societies and economies around the globe. In the United States there were approximately 172,000 chemical spills that affected US waterbodies from 2004 to 2014. More than 8000 of these spills involved non-petroleum-related chemicals. Traditional emergency responses or incident command structures (ICSs) that respond to chemical spills require coordinated efforts by predominantly government personnel from multiple disciplines, including disaster management, public health, and environmental protection. However, the requirements of emergency response teams for science support might not be met within the traditional ICS. We describe the US ICS as an example of emergency-response approaches to chemical spills and provide examples in which external scientific support from research personnel benefitted the ICS emergency response, focusing primarily on nonpetroleum chemical spills. We then propose immediate, near-term, and long-term activities to support the response to chemical spills, focusing on nonpetroleum chemical spills. Further, we call for science support for spill prevention and near-term spill-incident response and identify longerterm research needs. The development of a formal mechanism for external science support of ICS from governmental and nongovernmental scientists would benefit rapid responders, advance incident- and crisis-response science, and aid society in coping with and recovering from chemical spills

    Irritancy and Allergic Responses Induced by Topical Application of ortho-Phthalaldehyde

    No full text
    Although ortho-phthalaldehyde (OPA) has been suggested as an alternative to glutaraldehyde for the sterilization and disinfection of hospital equipment, the toxicity has not been thoroughly investigated. The purpose of these studies was to evaluate the irritancy and sensitization potential of OPA. The EpiDerm Skin Irritation Test was used to evaluate in vitro irritancy potential of OPA and glutaraldehyde. Treatment with 0.4125 and 0.55% OPA induced irritation, while glutaraldehyde exposure at these concentrations did not. Consistent with the in vitro results, OPA induced irritancy, evaluated by ear swelling, when mice were treated with 0.75%. Initial evaluation of the sensitization potential was conducted using the local lymph node assay at concentrations ranging from 0.005 to 0.75%. A concentration-dependent increase in lymphocyte proliferation was observed with a calculated EC3 value of 0.051% compared to that of 0.089%, previously determined for glutaraldehyde. Immunoglobulin (Ig) E-inducing potential was evaluated by phenotypic analysis of draining lymph node (DLN) cells and measurement of total and specific serum IgE levels. The 0.1 and 0.75% exposed groups yielded significant increases in the IgE+B220+ cell population in the lymph nodes while the 0.75% treated group demonstrated significant increases in total IgE, OPA-specific IgE, and OPA-specific IgG1. In addition, significant increases in interleukin-4 messenger RNA and protein expression in the DLNs were observed in OPA-treated groups. The results demonstrate the dermal irritancy and allergic potential of OPA and raise concern about the proposed/intended use of OPA as a safe alternative to glutaraldehyde
    corecore