19 research outputs found
Results of the First Coincident Observations by Two Laser-Interferometric Gravitational Wave Detectors
We report an upper bound on the strain amplitude of gravitational wave bursts
in a waveband from around 800Hz to 1.25kHz. In an effective coincident
observing period of 62 hours, the prototype laser interferometric gravitational
wave detectors of the University of Glasgow and Max Planck Institute for
Quantum Optics, have set a limit of 4.9E-16, averaging over wave polarizations
and incident directions. This is roughly a factor of 2 worse than the
theoretical best limit that the detectors could have set, the excess being due
to unmodelled non-Gaussian noise. The experiment has demonstrated the viability
of the kind of observations planned for the large-scale interferometers that
should be on-line in a few years time.Comment: 11 pages, 2 postscript figure
New Photodetection Method Using Unbalanced Sidebands for Squeezed Quantum Noise in Gravitational Wave Interferometer
Homodyne detection is one of the ways to circumvent the standard quantum
limit for a gravitational wave detector. In this paper it will be shown that
the same quantum-non-demolition effect using homodyne detection can be realized
by heterodyne detection with unbalanced RF sidebands. Furthermore, a broadband
quantum-non-demolition readout scheme can also be realized by the unbalanced
sideband detection.Comment: 9 pages, 5 figure
New Upper Limit of Terrestrial Equivalence Principle Test for Rotating Extended Bodies
Improved terrestrial experiment to test the equivalence principle for
rotating extended bodies is presented, and a new upper limit for the violation
of the equivalence principle is obtained at the level of 1.6, which is limited by the friction of the rotating gyroscope. It
means the spin-gravity interaction between the extended bodies has not been
observed at this level.Comment: 4 page
A 1.82 m^2 ring laser gyroscope for nano-rotational motion sensing
We present a fully active-controlled He-Ne ring laser gyroscope, operating in
square cavity 1.35 m in side. The apparatus is designed to provide a very low
mechanical and thermal drift of the ring cavity geometry and is conceived to be
operative in two different orientations of the laser plane, in order to detect
rotations around the vertical or the horizontal direction. Since June 2010 the
system is active inside the Virgo interferometer central area with the aim of
performing high sensitivity measurements of environmental rotational noise. So
far, continuous not attempted operation of the gyroscope has been longer than
30 days. The main characteristics of the laser, the active remote-controlled
stabilization systems and the data acquisition techniques are presented. An
off-line data processing, supported by a simple model of the sensor, is shown
to improve the effective long term stability. A rotational sensitivity at the
level of ten nanoradiants per squareroot of Hz below 1 Hz, very close to the
required specification for the improvement of the Virgo suspension control
system, is demonstrated for the configuration where the laser plane is
horizontal
Proposal for a Joint German-British Interferometric Gravitational Wave Detector
For many years there has been steady progress towards the detection of gravitational radiation. It has now become clear that the next major step should be the construction of a number of long-baseline detectors around the world. An array of detectors of this type is expected to allow the observation of gravitational waves from a range of astrophysical sources, leading to improved insight in many areas including stellar collapse, binary coalescence and the expansion of the Universe.
We propose that one of these detectors be built by a collaboration formed around the gravitational wave groups in Britain and Germany. In this document we present our case for this collaborative venture and outline the design philosophy of our proposed instrument - an interferometric detector with arms of length close to 3km.
Two detectors of the same general type are planned for the USA (LIGO project), one is planned for Italy (Italian/French VIRGO project) and another is proposed for Australia (AIGO project). It is expected that all the long baseline detectors to be built will operate as part of a coordinated worldwide network
Limits to the sensitivity of a low noise compact atomic gravimeter
A detailed analysis of the most relevant sources of phase noise in an atomic
interferometer is carried out, both theoretically and experimentally. Even a
short interrogation time of 100 ms allows our cold atom gravimeter to reach an
excellent short term sensitivity to acceleration of g at 1s.
This result relies on the combination of a low phase noise laser system,
efficient detection scheme and good shielding from vibrations. In particular,
we describe a simple and robust technique of vibration compensation, which is
based on correcting the interferometer signal by using the AC acceleration
signal measured by a low noise seismometer.Comment: 30 pages, 14 figure