2,057 research outputs found

    Developing transformative schools : a resilience-focused paradigm for education

    Get PDF
    For the better part of the past century, the field of education has witnessed repeated calls and initiatives for change, reform and improvement of our schools. Yet today, the problems of improving academic achievement and social adjustment among youth continue unabated. An explanation for this ‘change without change’ phenomenon is offered which differentiates innovative change from transformative change processes. A review of the research evidence regarding resilience and positive youth development, both academically and socially, is utilized to formulate a conceptual framework for guiding educators in creating resilience-focused, transformative schools. Specific attention is addressed to the application of such concepts as mindsets, resilience, socialemotional competencies, and supportive social environments (family and school) in adopting a new, transformative paradigm for developing more effective schools and more capable youth.peer-reviewe

    Testing the Hubble Law with the IRAS 1.2 Jy Redshift Survey

    Get PDF
    We test and reject the claim of Segal et al. (1993) that the correlation of redshifts and flux densities in a complete sample of IRAS galaxies favors a quadratic redshift-distance relation over the linear Hubble law. This is done, in effect, by treating the entire galaxy luminosity function as derived from the 60 micron 1.2 Jy IRAS redshift survey of Fisher et al. (1995) as a distance indicator; equivalently, we compare the flux density distribution of galaxies as a function of redshift with predictions under different redshift-distance cosmologies, under the assumption of a universal luminosity function. This method does not assume a uniform distribution of galaxies in space. We find that this test has rather weak discriminatory power, as argued by Petrosian (1993), and the differences between models are not as stark as one might expect a priori. Even so, we find that the Hubble law is indeed more strongly supported by the analysis than is the quadratic redshift-distance relation. We identify a bias in the the Segal et al. determination of the luminosity function, which could lead one to mistakenly favor the quadratic redshift-distance law. We also present several complementary analyses of the density field of the sample; the galaxy density field is found to be close to homogeneous on large scales if the Hubble law is assumed, while this is not the case with the quadratic redshift-distance relation.Comment: 27 pages Latex (w/figures), ApJ, in press. Uses AAS macros, postscript also available at http://www.astro.princeton.edu/~library/preprints/pop682.ps.g

    Evaluating the performance of low-energy feed forward osmosis system for desalination using impaired and saline water sources

    Get PDF
    Forward Osmosis (FO) is a natural process of treating water or wastewater due to the difference in osmotic pressures. FO is a membrane separation technology, applicable to food processing, industrial wastewater treatment and seawater or brackish water desalination. The phenomena of FO processes occur whereby water molecules are driven across a semi-permeable membrane by an osmotic pressure gradient that is generated from a higher concentrate draw solution. FO processes can recover potable water resources from wastewater streams through the flow of pure water from a lower concen-trated feed solution towards higher concentrated draw solutions leaving behind pollutants, impurities, and salts in the semi-permeable membrane. This paper assesses the design, build and testing of a laboratory scaled Feed Forward Osmosis (FFO) system for treating river water collected from the River Medway, Kent, England. The FO process was a highly effective form of river water treatment and able to treat the River Water with high rejection rates of solutes (>90%). Experimental results showed that the FFO system can achieve a better performance when the molarity of the draw solution is higher. The average solute rejection rate of the FO membrane for both inorganic and organic compounds was 94.83 %. Moreover, the operation of the forward osmosis membrane illustrated that it has a lower fouling propensity and higher solute rejection ca-pabilities. The pilot scaled FFO system has the ability for greater salt rejection and lower electronic conductivity levels which resulted from the successful desalination of river water. A sodium chloride (NaCl) or saltwater draw solution performed posi-tively in inducing higher osmotic pressures with a substantial effect of lower energy requirements for the system. Lower en-ergy consumptions of the FFO system allow similar water treatment possibilities with energy savings potential. The FFO system showed to be an environmentally viable and economically feasible river water treatment technology

    Comparison of new <i>in situ </i>root-reinforcement measuring devices to existing techniques

    Get PDF
    Mechanical root-reinforcement is difficult to quantify. Existing in-situ methods are cumbersome, while modelling requires parameters which are difficult to acquire. In this paper, two new in-situ measurement devices are introduced ('cork screw' and 'pin vane') and their performance is compared to field vane and laboratory direct shear strength measurements in fallow and rooted soil. Both new methods show a close correlation with field vane readings in fallow soil. Tests in reinforced soil show that both new methods can be installed without significant root disturbance. The simplicity of both new methods allows for practical in-situ use and both can be used to study soil stress-strain behaviour, thus addressing some major limitations in existing methodologies for characterising rooted soil.</p
    corecore