57 research outputs found

    Abdominal muscle fatigue following exercise in chronic obstructive pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with chronic obstructive pulmonary disease, a restriction on maximum ventilatory capacity contributes to exercise limitation. It has been demonstrated that the diaphragm in COPD is relatively protected from fatigue during exercise. Because of expiratory flow limitation the abdominal muscles are activated early during exercise in COPD. This adds significantly to the work of breathing and may therefore contribute to exercise limitation. In healthy subjects, prior expiratory muscle fatigue has been shown itself to contribute to the development of quadriceps fatigue. It is not known whether fatigue of the abdominal muscles occurs during exercise in COPD.</p> <p>Methods</p> <p>Twitch gastric pressure (TwT10Pga), elicited by magnetic stimulation over the 10<sup>th </sup>thoracic vertebra and twitch transdiaphragmatic pressure (TwPdi), elicited by bilateral anterolateral magnetic phrenic nerve stimulation were measured before and after symptom-limited, incremental cycle ergometry in patients with COPD.</p> <p>Results</p> <p>Twenty-three COPD patients, with a mean (SD) FEV<sub>1 </sub>40.8(23.1)% predicted, achieved a mean peak workload of 53.5(15.9) W. Following exercise, TwT<sub>10</sub>Pga fell from 51.3(27.1) cmH<sub>2</sub>O to 47.4(25.2) cmH<sub>2</sub>O (p = 0.011). TwPdi did not change significantly; pre 17.0(6.4) cmH<sub>2</sub>O post 17.5(5.9) cmH<sub>2</sub>O (p = 0.7). Fatiguers, defined as having a fall TwT10Pga ≥ 10% had significantly worse lung gas transfer, but did not differ in other exercise parameters.</p> <p>Conclusions</p> <p>In patients with COPD, abdominal muscle but not diaphragm fatigue develops following symptom limited incremental cycle ergometry. Further work is needed to establish whether abdominal muscle fatigue is relevant to exercise limitation in COPD, perhaps indirectly through an effect on quadriceps fatigability.</p

    Pulmonary and respiratory muscle function in response to 10 marathons in 10 days

    Get PDF
    Purpose: Marathon and ultramarathon provoke respiratory muscle fatigue and pulmonary dysfunction; nevertheless, it is unknown how the respiratory system responds to multiple, consecutive days of endurance exercise. Methods: Nine trained individuals (six male) contested 10 marathons in 10 consecutive days. Respiratory muscle strength (maximum static inspiratory and expiratory mouth-pressures), pulmonary function (spirometry), perceptual ratings of respiratory muscle soreness (Visual Analogue Scale), breathlessness (dyspnea, modified Borg CR10 scale), and symptoms of Upper Respiratory Tract Infection (URTI), were assessed before and after marathons on days 1, 4, 7, and 10. Results: Group mean time for 10 marathons was 276 ± 35 min. Relative to pre-challenge baseline (159 ± 32 cmH2O), MEP was reduced after day 1 (136 ± 31 cmH2O, p = 0.017), day 7 (138 ± 42 cmH2O, p = 0.035), and day 10 (130 ± 41 cmH2O, p = 0.008). There was no change in pre-marathon MEP across days 1, 4, 7, or 10 (p > 0.05). Pre-marathon forced vital capacity was significantly diminished at day 4 (4.74 ± 1.09 versus 4.56 ± 1.09 L, p = 0.035), remaining below baseline at day 7 (p = 0.045) and day 10 (p = 0.015). There were no changes in FEV1, FEV1/FVC, PEF, MIP, or respiratory perceptions during the course of the challenge (p > 0.05). In the 15-day post-challenge period, 5/9 (56%) runners reported symptoms of URTI, relative to 1/9 (11%) pre-challenge. Conclusions: Single-stage marathon provokes acute expiratory muscle fatigue which may have implications for health and/or performance, but 10 consecutive days of marathon running does not elicit cumulative (chronic) changes in respiratory function or perceptions of dyspnea. These data allude to the robustness of the healthy respiratory system
    corecore