657 research outputs found

    Self-Sensing Surface Plasmon Resonance for the Detection of Metallic Nanoparticles

    Get PDF
    Surface plasmon resonance (SPR) is an established technique for label free sensing of bio-molecular species, including time-dependent reaction analysis. Unlike previous research by other workers, who have used gold or silver nanoparticles to enhance sensitivity by inducing LSPR, this study involves the theoretical development of a Localised SPR (LSPR) system where a glass prism is considered with multilayer films to enable the detection of metallic nanoparticles. Silver nanoparticles with a volume concentration 0.25 % can be clearly detected from both amplitude and phase, according to the results of these simulations. The model presented is rigorous in that it accounts for the effect of the Cr or Ti adhesion layers together with a graphene layer at the metal-sensing interface. This enables the direct detection of the presence of nanoparticles from their plasmonic amplitude and phase (self-sensing). Our model also demonstrates that the sensitivity of the sensors can be significantly improved with the introduction of graphene layers

    Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits

    Get PDF
    Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening

    On-demand semiconductor single-photon source with near-unity indistinguishability

    Full text link
    Single photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness, and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence (RF) has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed RF single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3-ps laser pulses. The pi-pulse excited RF photons have less than 0.3% background contributions and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.Comment: 11 pages, 11 figure

    Post-Transcriptional Regulation of 5-Lipoxygenase mRNA Expression via Alternative Splicing and Nonsense-Mediated mRNA Decay

    Get PDF
    5-Lipoxygenase (5-LO) catalyzes the two initial steps in the biosynthesis of leukotrienes (LT), a group of inflammatory lipid mediators derived from arachidonic acid. Here, we investigated the regulation of 5-LO mRNA expression by alternative splicing and nonsense-mediated mRNA decay (NMD). In the present study, we report the identification of 2 truncated transcripts and 4 novel 5-LO splice variants containing premature termination codons (PTC). The characterization of one of the splice variants, 5-LOΞ”3, revealed that it is a target for NMD since knockdown of the NMD factors UPF1, UPF2 and UPF3b in the human monocytic cell line Mono Mac 6 (MM6) altered the expression of 5-LOΞ”3 mRNA up to 2-fold in a cell differentiation-dependent manner suggesting that cell differentiation alters the composition or function of the NMD complex. In contrast, the mature 5-LO mRNA transcript was not affected by UPF knockdown. Thus, the data suggest that the coupling of alternative splicing and NMD is involved in the regulation of 5-LO gene expression

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing

    Mercury sources to Lake Ozette and Lake Dickey : highly contaminated remote coastal lakes, Washington State, USA

    Get PDF
    Author Posting. Β© The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Water, Air, & Soil Pollution 208 (2009): 275-286, doi:10.1007/s11270-009-0165-y.Mercury concentrations in largemouth bass and mercury accumulation rates in age-dated sediment cores were examined at Lake Ozette and Lake Dickey in Washington State. Goals of the study were to compare concentrations in fish tissues at the two lakes with lakes in a larger statewide dataset and evaluate factors influencing lake loading at Ozette and Dickey, which may include: catchment disturbances, coastal mercury cycling, and the role of trans-Pacific Asian mercury. Mercury fish tissue concentrations at the lakes were among the highest recorded in Washington State. Wet deposition and historical atmospheric monitoring from the area show no indication of enhanced deposition from Asian sources or coastal atmospheric processes. Sediment core records from the lakes displayed rapidly increasing sedimentation rates coinciding with commercial logging. The unusually high mercury flux rates and mercury tissue concentrations recorded at Lake Ozette and Lake Dickey appear to be associated with logging within the catchments

    Retinoic acid induces HL-60 cell differentiation via the upregulation of miR-663

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Differentiation of the acute myeloid leukemia (AML) cell line HL-60 can be induced by all trans-retinoic acid (ATRA); however, the mechanism regulating this process has not been fully characterized.</p> <p>Methods</p> <p>Using bioinformatics and <it>in vitro </it>experiments, we identified the microRNA gene expression profile of HL-60 cells during ATRA induced granulocytic differentiation.</p> <p>Results</p> <p>Six microRNAs were upregulated by ATRA treatment, miR-663, miR-494, miR-145, miR-22, miR-363* and miR-223; and three microRNAs were downregulated, miR-10a, miR-181 and miR-612. Additionally, miR-663 expression was regulated by ATRA. We used a lentivirus (LV) backbone incorporating the spleen focus forming virus (SFFV-F) promoter to drive miR-663 expression, as the CMV (Cytomegalovirus) promoter is ineffective in some lymphocyte cells. Transfection of LV-miR-663 induced significant HL-60 cell differentiation <it>in vitro</it>.</p> <p>Conclusions</p> <p>Our results show miR-663 may play an important role in ATRA induced HL-60 cell differentiation. Lentivirus delivery of miR-663 could potentially be used directly as an anticancer treatment in hematological malignancies</p

    DR6 as a Diagnostic and Predictive Biomarker in Adult Sarcoma

    Get PDF
    The Death Receptor 6 (DR6) protein is elevated in the serum of ovarian cancer patients. We tested DR6 serum protein levels as a diagnostic/predictive biomarker in several epithelial tumors and sarcomas.DR6 gene expression profiles were screened in publically available arrays of solid tumors. A quantitative immunofluorescent western blot analysis was developed to test the serum of healthy controls and patients with sarcoma, uterine carcinosarcoma, bladder, liver, and pancreatic carcinomas. Change in DR6 serum levels was used to assay the ability of DR6 to predict the response to therapy of sarcoma patients.DR6 mRNA is highly expressed in all tumor types assayed. Western blot analysis of serum DR6 protein demonstrated high reproducibility (rβ€Š=β€Š0.97). Compared to healthy donor controls, DR6 serum levels were not elevated in patients with uterine carcinosarcoma, bladder, liver, or pancreatic cancers. Serum DR6 protein levels from adult sarcoma patients were significantly elevated (p<0.001). This was most evident for patients with synovial sarcoma. Change in serum DR6 levels during therapy correlated with clinical benefit from therapy (sensitivity 75%, and positive predictive value 87%).DR6 may be a clinically useful diagnostic and predictive serum biomarker for some adult sarcoma subtypes.Diagnosis of sarcoma can be difficult and can lead to improper management of these cancers. DR6 serum protein may be a tool to aid in the diagnosis of some sarcomatous tumors to improve treatment planning. For patients with advanced disease, rising DR6 levels predict non-response to therapy and may expedite therapeutic decision making and reduce reliance on radiologic imaging

    Clofazimine Inhibits Human Kv1.3 Potassium Channel by Perturbing Calcium Oscillation in T Lymphocytes

    Get PDF
    The Kv1.3 potassium channel plays an essential role in effector memory T cells and has been implicated in several important autoimmune diseases including multiple sclerosis, psoriasis and type 1 diabetes. A number of potent small molecule inhibitors of Kv1.3 channel have been reported, some of which were found to be effective in various animal models of autoimmune diseases. We report herein the identification of clofazimine, a known anti-mycobacterial drug, as a novel inhibitor of human Kv1.3. Clofazimine was initially identified as an inhibitor of intracellular T cell receptor-mediated signaling leading to the transcriptional activation of human interleukin-2 gene in T cells from a screen of the Johns Hopkins Drug Library. A systematic mechanistic deconvolution revealed that clofazimine selectively blocked the Kv1.3 channel activity, perturbing the oscillation frequency of the calcium-release activated calcium channel, which in turn led to the inhibition of the calcineurin-NFAT signaling pathway. These effects of clofazimine provide the first line of experimental evidence in support of a causal relationship between Kv1.3 and calcium oscillation in human T cells. Furthermore, clofazimine was found to be effective in blocking human T cell-mediated skin graft rejection in an animal model in vivo. Together, these results suggest that clofazimine is a promising immunomodulatory drug candidate for treating a variety of autoimmune disorders
    • …
    corecore