30 research outputs found

    Recurrence of hepatitis C virus during leucocytopenia and spontaneous clearance after recovery from cytopenia: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>There is little information about the risk of HCV recurrence in immunosuppressed patients. Although the presence of antibodies to HCV and the absence of HCV-RNA is usually considered to indicate viral elimination, the virus may not be completely eliminated but may be under control of an effective immune response.</p> <p>Case presentation</p> <p>A 69 year old man presented with jaundice, elevated ALT, AST, lipase and concomitant abdominal pain. He was found to be positive for HCV-RNA (genotype 3a) and was diagnosed with acute hepatitis C. Six weeks later no HCV-RNA was detected, and the patient was diagnosed with hyperthyreosis and started on propylthiouracil. After 4 weeks of propylthiouracil treatment, the patient developed leucocytopenia, followed by liver function deterioration and reappearance of HCV-RNA. Propylthiouracil was discontinued and his leukocyte counts increased. Twenty-eight weeks after onset of acute hepatitis C, no HCV-RNA was detected.</p> <p>Conclusion</p> <p>This case history shows the risk of recurrence of HCV during leucocytopenia. These findings indicate that patients who are anti-HCV positive but HCV-RNA negative may be at risk of cytopenia-induced HCV reactivation.</p

    Evidence of CD4+ T cell-mediated immune pressure on the Hepatitis C virus genome

    Get PDF
    Hepatitis C virus (HCV)-specific T cell responses are critical for immune control of infection. Viral adaptation to these responses, via mutations within regions of the virus targeted by CD8+ T cells, is associated with viral persistence. However, identifying viral adaptation to HCV-specific CD4+ T cell responses has been difficult although key to understanding anti-HCV immunity. In this context, HCV sequence and host genotype from a single source HCV genotype 1B cohort (n = 63) were analyzed to identify viral changes associated with specific human leucocyte antigen (HLA) class II alleles, as these variable host molecules determine the set of viral peptides presented to CD4+ T cells. Eight sites across the HCV genome were associated with HLA class II alleles implicated in infection outcome in this cohort (p ≤ 0.01; Fisher’s exact test). We extended this analysis to chronic HCV infection (n = 351) for the common genotypes 1A and 3A. Variation at 38 sites across the HCV genome were associated with specific HLA class II alleles with no overlap between genotypes, suggestive of genotype-specific T cell targets, which has important implications for vaccine design. Here we show evidence of HCV adaptation to HLA class II-restricted CD4+ T cell pressure across the HCV genome in chronic HCV infection without a priori knowledge of CD4+ T cell epitopes

    Inhibition of HCV 3a genotype entry through Host CD81 and HCV E2 antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HCV causes acute and chronic hepatitis which can eventually lead to permanent liver damage hepatocellular carcinoma and death. HCV glycoproteins play an important role in HCV entry by binding with CD81 receptors. Hence inhibition of virus at entry step is an important target to identify antiviral drugs against HCV.</p> <p>Methods and result</p> <p>The present study elaborated the role of CD81 and HCV glycoprotein E2 in HCV entry using retroviral pseudo-particles of 3a local genotype. Our results demonstrated that HCV specific antibody E2 and host antibody CD81 showed dose- dependent inhibition of HCV entry. HCV E2 antibody showed 50% reduction at a concentration of 1.5 ± 1 μg while CD81 exhibited 50% reduction at a concentration of 0.8 ± 1 μg. In addition, data obtained with HCVpp were also confirmed with the infection of whole virus of HCV genotype 3a in liver cells.</p> <p>Conclusion</p> <p>Our data suggest that HCV specific E2 and host CD81 antibodies reduce HCVpp entry and full length viral particle and combination of host and HCV specific antibodies showed synergistic effect in reducing the viral titer.</p

    Dual Function of the NK Cell Receptor 2B4 (CD244) in the Regulation of HCV-Specific CD8+ T Cells

    Get PDF
    The outcome of viral infections is dependent on the function of CD8+ T cells which are tightly regulated by costimulatory molecules. The NK cell receptor 2B4 (CD244) is a transmembrane protein belonging to the Ig superfamily which can also be expressed by CD8+ T cells. The aim of this study was to analyze the role of 2B4 as an additional costimulatory receptor regulating CD8+ T cell function and in particular to investigate its implication for exhaustion of hepatitis C virus (HCV)-specific CD8+ T cells during persistent infection. We demonstrate that (i) 2B4 is expressed on virus-specific CD8+ T cells during acute and chronic hepatitis C, (ii) that 2B4 cross-linking can lead to both inhibition and activation of HCV-specific CD8+ T cell function, depending on expression levels of 2B4 and the intracellular adaptor molecule SAP and (iii) that 2B4 stimulation may counteract enhanced proliferation of HCV-specific CD8+ T cells induced by PD1 blockade. We suggest that 2B4 is another important molecule within the network of costimulatory/inhibitory receptors regulating CD8+ T cell function in acute and chronic hepatitis C and that 2B4 expression levels could also be a marker of CD8+ T cell dysfunction. Understanding in more detail how 2B4 exerts its differential effects could have implications for the development of novel immunotherapies of HCV infection aiming to achieve immune control

    Polyfunctional Type-1, -2, and -17 CD8+ T Cell Responses to Apoptotic Self-Antigens Correlate with the Chronic Evolution of Hepatitis C Virus Infection

    Get PDF
    Caspase-dependent cleavage of antigens associated with apoptotic cells plays a prominent role in the generation of CD8+ T cell responses in various infectious diseases. We found that the emergence of a large population of autoreactive CD8+ T effector cells specific for apoptotic T cell-associated self-epitopes exceeds the antiviral responses in patients with acute hepatitis C virus infection. Importantly, they endow mixed polyfunctional type-1, type-2 and type-17 responses and correlate with the chronic progression of infection. This evolution is related to the selection of autoreactive CD8+ T cells with higher T cell receptor avidity, whereas those with lower avidity undergo prompt contraction in patients who clear infection. These findings demonstrate a previously undescribed strict link between the emergence of high frequencies of mixed autoreactive CD8+ T cells producing a broad array of cytokines (IFN-γ, IL-17, IL-4, IL-2…) and the progression toward chronic disease in a human model of acute infection

    Transient immunological control during acute hepatitis C virus infection: ex vivo analysis of helper T-cell responses.

    No full text
    Hepatitis C virus (HCV) readily sets up persistence after acute infection. Cellular immune responses are thought to play a major role in control of the virus. Failure of CD4+ T-cell responses in acute disease is associated with viral persistence but the dynamics of this are poorly understood. We aimed to assess such responses using a novel set of Class II tetrameric complexes (tetramers) to study helper T-cells ex vivo in acute disease. We analysed the HCV-specific CD4+ T-cell response in a patient with acute hepatitis c infection. We were able to track the virus-specific CD4+ T-cells directly ex vivo with HLA DR4 tetramers. Proliferative responses were absent initially, recovered as viral load dropped and were lost again during relapse. Longitudinal tetramer analyses showed expanded populations of antiviral CD4+ T-cells throughout acute infection despite lack of proliferation. A pattern of transient CD4+ T-cell proliferative responses as HCV is partially controlled is observed. Failure to control virus is associated with emergence of 'dysfunctional' CD4+ T-cell populations. Failure to control HCV in acute disease may relate to the capacity to sustain efficient immune responses as virus attempts to 'bounce back' after partial control

    CD8+ T lymphocyte responses are induced during acute hepatitis C virus infection but are not sustained.

    No full text
    Cellular immune responses are likely to play a key role in determining the clinical outcome in acute infection with hepatitis C virus (HCV), but the dynamics of such responses and their relationship to viral clearance are poorly understood. In a previous study we have shown highly activated, multispecific cytotoxic T lymphocyte responses arising early and persisting in an individual who subsequently cleared the virus. In this study the HCV-specific CD8+ lymphocytes response has been similarly analyzed, using peptide-HLA class I tetramers, in a further nine individuals with documented acute HCV infection, six of whom failed to clear the virus. Significant populations of virus-specific CD8+ lymphocytes were detected at the peak of acute hepatic illness (maximally 3.5% of CD8+ lymphocytes). Frequencies were commonly lower than those seen previously and were generally not sustained. Early HCV-specific CD8+ lymphocytes showed an activated phenotype in all patients (CD38+ and HLA class II+), but this activation was short-lived. Failure to sustain sufficient numbers of activated virus-specific CD8+ lymphocytes may contribute to persistence of HCV
    corecore