17 research outputs found

    Does training of general practitioners for intensive treatment of people with screen-detected diabetes have a spillover effect on mortality and cardiovascular morbidity in ‘at risk’ individuals with normoglycaemia? Results from the ADDITION-Denmark cluster-randomised controlled trial

    Get PDF
    Aims/hypothesis Within a trial of intensive treatment of people with screen-detected diabetes, we aimed to assess a potential spillover effect of the trial intervention on incident cardiovascular disease (CVD) and all-cause mortality among people who screened positive on a diabetes risk questionnaire but who were normoglycaemic. Methods In the Anglo–Danish–Dutch Study of Intensive Treatment In People with Screen-Detected Diabetes in Primary Care (ADDITION)-Denmark trial, 175 general practices were cluster-randomised into: (1) screening plus routine care of individuals with screen-detected diabetes (control group); or (2) screening plus training and support in intensive multifactorial treatment of individuals with screen-detected diabetes (intervention group). We identified all individuals who screened positive on a diabetes risk questionnaire in ADDITION-Denmark but were normoglycaemic following biochemical testing for use in this secondary analysis. After a median 8.9 years follow-up, we used data from national registers to compare rates of first CVD events and all-cause mortality in individuals in the routine care group with those in the intensive treatment group. Results In total, 21,513 individuals screened positive for high risk of diabetes but were normoglycaemic on biochemical testing in ADDITION-Denmark practices between 2001 and 2006 (10,289 in the routine care group and 11,224 in the intensive treatment group). During 9 years of follow-up, there were 3784 first CVD events and 1748 deaths. The incidence of CVD was lower among the intensive treatment group compared with the routine care group (HR 0.92 [95% CI 0.85, 0.99]). This association was stronger among individuals at highest CVD risk (heart SCORE ≥ 10; HR 0.85 [95% CI 0.75, 0.96]). There was no difference in mortality between the two treatment groups (HR 1.02 [95% CI 0.92, 1.14]). Conclusions/interpretation Training of general practitioners to provide target-driven intensive management of blood glucose levels and other cardiovascular risk factors showed some evidence of a spillover effect on the risk of CVD over a 9 year period among individuals at high risk of diabetes. The effect was particularly pronounced among those at highest risk of CVD. There was no effect on mortality. Trial registration: ClinicalTrials.gov NCT00237549ADDITION-Denmark was supported by the national health services in the counties of Copenhagen, Aarhus, Ringkøbing, Ribe and South Jutland in Denmark, the Danish Council for Strategic Research, the Danish Research Foundation for General Practice, Novo Nordisk Foundation, the Danish Centre for Evaluation and Health Technology Assessment, the diabetes fund of the National Board of Health, the Danish Medical Research Council and the Aarhus University Research Foundation. The trial has been supported by unrestricted grants from Novo Nordisk A/S, Novo Nordisk Scandinavia AB, Novo Nordisk UK, ASTRA Denmark, Pfizer Denmark, GlaxoSmithKline Pharma Denmark, Servier Denmark AS and HemoCue Denmark AS

    Time domains of the hypoxic ventilatory response in ectothermic vertebrates

    Get PDF
    Over a decade has passed since Powell et al. (Respir Physiol 112:123–134, 1998) described and defined the time domains of the hypoxic ventilatory response (HVR) in adult mammals. These time domains, however, have yet to receive much attention in other vertebrate groups. The initial, acute HVR of fish, amphibians and reptiles serves to minimize the imbalance between oxygen supply and demand. If the hypoxia is sustained, a suite of secondary adjustments occur giving rise to a more long-term balance (acclimatization) that allows the behaviors of normal life. These secondary responses can change over time as a function of the nature of the stimulus (the pattern and intensity of the hypoxic exposure). To add to the complexity of this process, hypoxia can also lead to metabolic suppression (the hypoxic metabolic response) and the magnitude of this is also time dependent. Unlike the original review of Powell et al. (Respir Physiol 112:123–134, 1998) that only considered the HVR in adult animals, we also consider relevant developmental time points where information is available. Finally, in amphibians and reptiles with incompletely divided hearts the magnitude of the ventilatory response will be modulated by hypoxia-induced changes in intra-cardiac shunting that also improve the match between O2 supply and demand, and these too change in a time-dependent fashion. While the current literature on this topic is reviewed here, it is noted that this area has received little attention. We attempt to redefine time domains in a more ‘holistic’ fashion that better accommodates research on ectotherms. If we are to distinguish between the genetic, developmental and environmental influences underlying the various ventilatory responses to hypoxia, however, we must design future experiments with time domains in mind

    HbA1c, fasting and 2-hour plasma glucose in current, ex-, and non-smokers: a meta-analysis

    No full text
    Aims/Hypothesis: The relationships between smoking and glycaemic variables have not been well explored. We compared HbA1c, fasting plasma glucose (FPG) and 2 h plasma glucose (2H-PG) in current, ex- and never-smokers. Methods: This meta-analysis used individual data from 16,886 men and 18,539 women without known diabetes in 12 DETECT-2 consortium studies and in the French Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR) and Telecom studies. Means of three glycaemic variables in current, ex- and never-smokers were modelled by linear regression, with study as a random factor. The I2 statistic was used to evaluate heterogeneity among studies. Results: HbA1c was 0.10% (95% CI 0.08, 0.12) (1.1 mmol/mol [0.9, 1.3]) higher in current smokers and 0.03% (0.01, 0.05) (0.3 mmol/mol [0.1, 0.5]) higher in ex-smokers, compared with never-smokers. For FPG, there was no significant difference between current and never-smokers (−0.004 mmol/l [−0.03, 0.02]) but FPG was higher in ex-smokers (0.12 mmol/l [0.09, 0.14]). In comparison with never-smokers, 2H-PG was lower (−0.44 mmol/l [−0.52, −0.37]) in current smokers, with no difference for ex-smokers (0.02 mmol/l [−0.06, 0.09]).There was a large and unexplained heterogeneity among studies, with I2 always above 50%; I2 was little changed after stratification by sex and adjustment for age and BMI. In this study population, current smokers had a prevalence of diabetes that was 1.30% higher as screened by HbA1c and 0.52% lower as screened by 2H-PG, in comparison with never-smokers. Conclusion/interpretation: Across this heterogeneous group of studies, current smokers had a higher HbA1c and lower 2H-PG than never-smokers. This will affect the chances of smokers being diagnosed with diabetes
    corecore