67 research outputs found

    Active-site-serine D-alanyl-D-alanine-cleaving-peptidase-catalysed acyl-transfer reactions. Procedures for studying the penicillin-binding proteins of bacterial plasma membranes

    Full text link
    Under certain conditions, the values of the parameters that govern the interactions between the active-site-serine D-alanyl-D-alanine-cleaving peptidases and both carbonyl-donor substrates and beta-lactam suicide substrates can be determined on the basis of the amounts of (serine ester-linked) acyl-protein formed during the reactions. Expressing the 'affinity' of a beta-lactam compound for a DD-peptidase in terms of second-order rate constant of enzyme acylation and first-order rate constant of acyl-enzyme breakdown rests upon specific features of the interaction (at a given temperature) and permits study of structure-activity relationships, analysis of the mechanism of intrinsic resistance and use of a 'specificity index' to define the capacity of a beta-lactam compound of discriminating between various sensitive enzymes. From knowledge of the first-order rate constant of acyl-enzyme breakdown and the given time of incubation, the beta-lactam compound concentrations that are necessary to achieve given extents of DD-peptidase inactivation can be converted into the second-order rate constant of enzyme acylation. The principles thus developed can be applied to the study of the multiple penicillin-binding proteins that occur in the plasma membranes of bacteria

    Streptomyces K15 active-site serine DD-transpeptidase: specificity profile for peptide, thiol ester and ester carbonyl donors and pathways of the transfer reactions.

    Full text link
    The Streptomyces K15 transferase is a penicillin-binding protein presumed to be involved in bacterial wall peptidoglycan crosslinking. It catalyses cleavage of the peptide, thiol ester or ester bond of carbonyl donors Z-R1-CONH-CHR2-COX-CHR3-COO- (where X is NH, S or O) and transfers the electrophilic group Z-R1-CONH-CHR2-CO to amino acceptors via an acyl-enzyme intermediate. Kinetic data suggest that the amino acceptor behaves as a simple alternative nucleophile at the level of the acyl-enzyme in the case of thiol ester and ester donors, and that it binds to the enzyme.carbonyl donor Michaelis complex and influences the rate of enzyme acylation by the carbonyl donor in the case of amide donors. Depending on the nature of the scissile bond, the enzyme has different requirements for substituents at positions R1, R2 and R3

    Secretion by Overexpression and Purification of the Water-Soluble Streptomyces K15 Dd-Transpeptidase/Penicillin-Binding Protein

    Full text link
    Though synthesized with a cleavable signal peptide and devoid of membrane anchors, the 262-amino-acid-residue Streptomyces K15 DD-transpeptidase/penicillin-binding protein is membrane-bound. Overexpression in Streptomyces lividans resulted in the export of an appreciable amount of the synthesized protein (4 mg/litre of culture supernatant). The water-soluble enzyme was purified close to protein homogeneity with a yield of 75%. It requires the presence of 0.5 M-NaCl to remain soluble. It is indistinguishable from the detergent-extract wild-type enzyme with respect to molecular mass, thermostability, transpeptidase activity and penicillin-binding capacity

    The peptidoglycan crosslinking enzyme system in Streptomyces R61, K15 and rimosus. Immunological studies

    Full text link
    The exocellular DD-carboxypeptidases from Streptomyces R61, K 15, the lysozyme-releasable DD-carboxypeptidases from Streptomyces R61, K15 and rimosus, and the membrane-bound DD-carboxypeptidase of Streptomyces K15 are immunologically related to each other

    On the substrate specificity of bacterial DD-peptidases: evidence from two series of peptidoglycan-mimetic peptides

    Get PDF
    The reactions between bacterial DD-peptidases and beta-lactam antibiotics have been studied for many years. Less well understood are the interactions between these enzymes and their natural substrates, presumably the peptide moieties of peptidoglycan. In general, remarkably little activity has previously been demonstrated in vitro against potential peptide substrates, although in many cases the peptides employed were non-specific and not homologous with the relevant peptidoglycan. In this paper, the specificity of a panel of DD-peptidases against elements of species-specific D-alanyl-D-alanine peptides has been assessed. In two cases, those of soluble, low-molecular-mass DD-peptidases, high activity against the relevant peptides has been demonstrated. In these cases, the high specificity is towards the free N-terminus of the peptidoglycan fragment. With a number of other enzymes, particularly high-molecular-mass DD-peptidases, little or no activity against these peptides was observed. In separate experiments, the reactivity of the enzymes against the central, largely invariant, peptide stem was examined. None of the enzymes surveyed showed high activity against this structural element although weak specificity in the expected direction towards the one structural variable (D-gammaGln versus D-gammaGlu) was observed. The current state of understanding of the activity of these enzymes in vitro is discussed

    Acyltransferase activities of the high-molecular-mass essential penicillin-binding proteins

    Full text link
    The high-molecular-mass penicillin-binding proteins (HMM-PBPs), present in the cytoplasmic membranes of all eubacteria, are involved in important physiological events such as cell elongation, septation or shape determination. Up to now it has, however, been very difficult or impossible to study the catalytic properties of the HMM-PBPs in vitro. With simple substrates, we could demonstrate that several of these proteins could catalyse the hydrolysis of some thioesters or the transfer of their acyl moiety on the amino group of a suitable acceptor nucleophile. Many of the acyl-donor substrates were hippuric acid or benzoyl-D-alanine derivatives, and their spectroscopic properties enabled a direct monitoring of the enzymic reaction. In their presence, the binding of radioactive penicillin to the PBPs was also inhibited

    Kinetic characterization of the monofunctional glycosyltransferase from Staphylococcus aureus

    Full text link
    The glycosyltransferase (GT) module of class A penicillin-binding proteins (PBPs) and monofunctional GTs (MGTs) belong to the GT51 family in the sequence-based classification of GTs. They both possess five conserved motifs and use lipid II precursor (undecaprenyl-pyrophosphate-N-acetylglucosaminyl-N-acetylmuramoyl- pentapeptide) to synthesize the glycan chain of the bacterial wall peptidoglycan. MGTs appear to be dispensable for growth of some bacteria in vitro. However, new evidence shows that they may be essential for the infection process and development of pathogenic bacteria in their hosts. Only a small number of class A PBPs have been characterized so far, and no kinetic data are available on MGTs. In this study, we present the principal enzymatic properties of the Staphylococcus aureus MGT. The enzyme catalyzes glycan chain polymerization with an efficiency of similar to 5,800 M-1 s(-1) and has a pH optimum of 7.5, and its activity requires metal ions with a maximum observed in the presence of Mn2+. The properties of S. aureus MGT are distinct from those of S. aureus PBP2 and Escherichia coli MGT, but they are similar to those of E. coli PBP1b. We examined the role of the conserved Glu100 of S. aureus MGT (equivalent to the proposed catalytic Glu233 of E. coli PBP1b) by site-directed mutagenesis. The Glu100Gln mutation results in a drastic loss of GT activity. This shows that Glu100 is also critical for catalysis in S. aureus MGT and confirms that the conserved glutamate of the first motif EDXXFXX(H/N)X(G/A) is likely the key catalytic residue in the GT51 active site

    Penicillin-binding proteins and carboxypeptidase/transpeptidase activities in Proteus vulgaris P18 and its penicillin-induced stable L-forms

    Full text link
    The originally penicillin-induced, wall-less stable L-forms of Proteus vulgaris P18, isolated by Tulasne in 1949 and since then cultured in he absence of penicillin, have kept the ability to synthesize the seven penicillin-binding proteins and the various DD- and LD-peptidase activities found in the parental bacteria and known to be involved in wall peptidoglycan metabolism. The stable L-forms, however, secrete during growth both the highly penicillin-sensitive, DD-carboxy-peptidase-transpeptidase penicillin-binding protein PBP4 (which in normal bacteria is relatively loosely bound to the plasma membrane) and the penicillin-insensitive LD-carboxypeptidase (which in normal bacteria is located in the periplasmic region)
    corecore