16,091 research outputs found

    Possibility of S=1 spin liquids with fermionic spinons on triangular lattices

    Full text link
    In this paper we generalize the fermionic representation for S=1/2S=1/2 spins to arbitrary spins. Within a mean field theory we obtain several spin liquid states for spin S=1S=1 antiferromagnets on triangular lattices, including gapless f-wave spin liquid and topologically nontrivial px+ipyp_x+ip_y spin liquid. After considering different competing orders, we construct a phase diagram for the J1J_1-J3J_3-KK model. The application to recently discovered material NiGa2S4\mathrm{NiGa_2S_4} is discussed.Comment: 5 pages, 3 figure

    Fermionic theory for quantum antiferromagnets with spin S > 1/2

    Full text link
    The fermion representation for S = 1/2 spins is generalized to spins with arbitrary magnitudes. The symmetry properties of the representation is analyzed where we find that the particle-hole symmetry in the spinon Hilbert space of S =1/2 fermion representation is absent for S > 1/2. As a result, different path integral representations and mean field theories can be formulated for spin models. In particular, we construct a Lagrangian with restored particle-hole symmetry, and apply the corresponding mean field theory to one dimensional (1D) S = 1 and S = 3/2 antiferromagnetic Heisenberg models, with results that agree with Haldane's conjecture. For a S = 1 open chain, we show that Majorana fermion edge states exist in our mean field theory. The generalization to spins with arbitrary magnitude S is discussed. Our approach can be applied to higher dimensional spin systems. As an example, we study the geometrically frustrated S = 1 AFM on triangular lattice. Two spin liquids with different pairing symmetries are discussed: the gapped px + ipy-wave spin liquid and the gapless f-wave spin liquid. We compare our mean field result with the experiment on NiGa2S4, which remains disordered at low temperature and was proposed to be in a spin liquid state. Our fermionic mean field theory provide a framework to study S > 1/2 spin liquids with fermionic spinon excitations.Comment: 16 pages, 4 figure

    Optimal Online Transmission Policy for Energy-Constrained Wireless-Powered Communication Networks

    Get PDF
    This work considers the design of online transmission policy in a wireless-powered communication system with a given energy budget. The system design objective is to maximize the long-term throughput of the system exploiting the energy storage capability at the wireless-powered node. We formulate the design problem as a constrained Markov decision process (CMDP) problem and obtain the optimal policy of transmit power and time allocation in each fading block via the Lagrangian approach. To investigate the system performance in different scenarios, numerical simulations are conducted with various system parameters. Our simulation results show that the optimal policy significantly outperforms a myopic policy which only maximizes the throughput in the current fading block. Moreover, the optimal allocation of transmit power and time is shown to be insensitive to the change of modulation and coding schemes, which facilitates its practical implementation.Comment: 7 pages, accepted by ICC 2019. An extended version of this paper is accepted by IEEE TW

    Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway.

    Get PDF
    A systematic evaluation of the influence of sex on transduction by recombinant adeno-associated viral vector (rAAV) indicated that transgene expression after liver-targeted delivery of vector particles was between 5- to 13-fold higher in male mice compared with female mice, irrespective of the proviral promoter or cDNA and mouse strain. Molecular analysis revealed that the rAAV genome was stably retained in male liver at levels that were 7-fold higher than those observed in females. Further, the sex difference in transduction was observed with AAV-2- and AAV-5-based vectors, which use distinct receptor complexes for infection. In concordance with the differences in AAV transduction, gel shift analysis with nuclear extracts derived from the liver of mice and humans revealed substantially higher binding of host nuclear protein to the rep-binding site (RBS) of AAV inverted terminal repeat (ITR) in males compared with females. Transduction efficiency and binding of nuclear protein to RBS was dramatically reduced in male mice by castration. In contrast, although oophorectomy did not significantly influence rAAV transduction, administration of 5alpha dihydrotestosterone, prior to gene transfer, increased stable hepatocyte gene transfer in females to levels observed in male mice, implying that androgens significantly influence hepatocyte gene transfer. Interestingly, sex did not have a significant effect on AAV gene transfer into nonhepatic tissue, indicating that there are distinct tissue- and sex-specific differences in the mechanisms responsible for efficient transduction with this vector. These results have significant implications for gene therapy of autosomal and acquired disorders affecting the liver

    Electro-osmotic flow through a thin channel with gradually varying wall potential and hydrodynamic slippage

    Get PDF
    The lubrication approximation is applied to electro-osmotic flow through a thin parallel-plate channel under the combined effect of charge and hydrodynamic slippage modulation on the walls. The walls are periodically patterned for the charge and slip distributions, with a wavelength much longer than the channel height. It is shown that the phase of the wall patterns will play a significant role in determining the section-averaged velocity as well as the local convection pattern, both quantitatively and qualitatively. The effect of the phase on the flow will be dramatically different, depending on whether the electric field is applied along or perpendicular to the varying direction of the patterns. The possibility of generating a net flow in a direction perpendicular to the applied field is demonstrated. © 2012 The Japan Society of Fluid Mechanics and IOP Publishing Ltd.postprin

    Quantum impurity in the bulk of topological insulator

    Get PDF
    We investigate physical properties of an Anderson impurity embedded in the bulk of a topological insulator. The slave-boson mean-field approximation is used to account for the strong electron correlation at the impurity. Different from the results of a quantum impurity on the surface of a topological insulator, we find for the band-inverted case, a Kondo resonant peak and in-gap bound states can be produced simultaneously. However, only one type of them appears for the normal case. It is shown that the mixed-valence regime is much broader in the band-inverted case, while it shrinks to a very narrow regime in the normal case. Furthermore, a self-screening of the Kondo effect may appear when the interaction between the bound-state spin and impurity spin is taken into account.Comment: 11 pages, 8 figure
    corecore