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Quantum impurity in the bulk of topological insulator
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We investigate physical properties of an Anderson impurity embedded in the bulk of a topological
insulator. The slave-boson mean-field approximation is used to account for the strong electron
correlation at the impurity. Different from the results of a quantum impurity on the surface of a
topological insulator, we find for the band-inverted case, that a Kondo resonant peak and in-gap
bound states can be produced simultaneously. However, only one of them appears for the normal
case. It is shown that the mixed-valence regime is much broader in the band-inverted case, while
it shrinks to a very narrow regime in the normal case. Furthermore, a self-screening of the Kondo
effect may appear when the interaction between the bound-state spin and impurity spin is taken
into account.

PACS numbers: 71.27.+a, 73.20.Hb, 75.20.Hr

I. INTRODUCTION

A topological insulator (TI) is insulating in the bulk,
but hosts conducting edge or surface states near the sys-
tem boundary. It has attracted attention in the com-
munity of condensed matter physics due to its potential
application in spintronics and quantum computation.1–3

A class of materials such as Bi2Se3 and Bi2Te3 has been
found to possess surface states which form a single Dirac
cone.4–6 Suppression of backscattering inside the Dirac
cone guarantees that the Dirac dispersion remains essen-
tially unperturbed for weak perturbation that preserves
time-reversal symmetry.7,8 So far, the effects of impurity
scattering on the surface of TIs have been investigated
extensively.9–22 In the presence of classical spins which
break time-reversal symmetry, it was predicted that the
impurity could open up a local gap and suppress the
local density of states.9,10 The suppression of backscat-
tering around nonmagnetic impurities on surfaces with
strong spin-orbit coupling has been confirmed by scan-
ning tunneling miscroscope experiments.11–14 However,
strong nonmagnetic scattering, such as that from electro-
static potentials, may disrupt the Dirac cone and create
low-energy impurity resonances.15 For a quantum impu-
rity on the surface of a TI, the Hamiltonian for the im-
purity can be mapped to the conventional pseudo-gap
Anderson model. The impurity is fully screened at low
temperatures when the Fermi level is located away from
the Dirac point.16,17

Although there are theoretical and experimental stud-
ies on the quasi-particle states around an impurity, most
of them focus on the impurity on the surface of the TI.
Essentially, the topological nature of TIs is determined by
the electronic structure of the bulk bands instead of the
surface states. On the other hand, the TI samples avail-
able nowadays are always poorly insulating in the bulk,
owing to a large amount of vacancies and defects.23–27

For these reasons, it is important to study how the quasi-
particle states are affected when vacancies or impurities

are localized in the bulk of the system. It has been
shown that classical spins18 or vacancies19,20 localized in
the bulk of TIs could result in the coexistence of in-gap
bound states and boundary states. For a quantum im-
purity, the quantum fluctuations of its internal degree of
freedom play an important role, making it significantly
differ from classical impurities.28 However, it remains un-
known how a quantum impurity in the bulk of a TI affects
the electronic states.

The study of quantum impurity in TIs is also re-
lated to the problems of impurities in unconventional
density waves,28–31 gapped systems,32,33 or spin-orbit-
coupled systems.34–36 For instance, in a gapped sys-
tem, the Kondo effect breaks down when the energy
gap exceeds a critical value.32 In the presence of Rashba
spin-orbit interaction, a parity-breaking Dzyaloshinsky-
Moriya term could be induced, resulting in a possible
change of the Kondo temperature.34–36 Since there are
strong spin-orbit couplings and unconventional gaps in
the TIs, it becomes interesting to investigate the differ-
ences between the Kondo effects in conventional insula-
tors and TIs.

In this paper, we investigate the effects of a quantum
impurity embedded in a TI with the help of the slave-
boson mean-field approach. We show that in-gap bound
states and Kondo effect could coexist in TIs, while only
one of them appears for conventional insulators. If the
bound states are singly occupied, the Kondo resonance
could be screened by the exchange interaction between
the impurity spin and the spin of the impurity-induced
bound states, leading to a self-screened Kondo effect.
The paper is organized as follows. In Sec. II we in-
troduce a model Hamiltonian of an impurity in a TI and
the slave-boson mean-field approach. In Sec. III we dis-
cuss the Kondo effect and the formation of the in-gap
bound states in both band-inverted and normal cases. In
Sec. IV, we show the self-screening of the Kondo effect.
Finally, a summary is presented in Sec. V.

http://arxiv.org/abs/1209.4710v2
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II. MODEL HAMILTONIAN AND SLAVE

BOSON APPROACH

A. Model

The effective model to describe the bulk states of the
TI with an impurity is written as

H = H0 +Hd +Ht. (1)

The part for the bulk electrons of TI is given by the
modified Dirac model37–39

H0 = Ψ†
k[~vF

~k · ~α+ (mv2F −B~
2k2)β]Ψk

with αi = σx ⊗ σi and β = σz ⊗σ0, where σi (i = x, y, z)
are the Pauli matrices and σ0 is the 2 × 2 unit ma-
trix. ki = −i∂i (i = x, y, z) is the momentum operator,
k2 = k2x + k2y + k2z , and vF and m have the dimensions
of speed and mass, respectively. Different from the sur-
face Hamiltonian, a quadratic correction in momentum
−B~

2k2 and a gap term mv2F are introduced in the bulk
Hamiltonian. The sign of mB determines whether the
system is topologically trivial or not: it is nontrivial for
mB > 0 (i.e., the band-inverted case), and trivial for
mB < 0 (i.e., the normal case).37–39 The energy spec-
tra have a finite energy gap. Here the basis vectors are
chosen as

Ψ†
k =

(

a†k↑, a
†
k↓, b

†
k↑, b

†
k↓

)

,

where a†kσ and b†kσ are creation operators of electrons
with spin σ on two different orbits. In this representa-
tion, we can rewrite the total Hamiltonian in the second-
quantized form

H0 =
∑

kσ

(mv2F −B~
2k2)(a†kσakσ − b†kσbkσ)

+~vF
∑

k

[kz(a
†
k↑bk↑ − a†k↓bk↓)

+(kx − iky)(a
†
k↑bk↓ + b†k↑ak↓) + H.c.]. (2)

The Hamiltonian that describes the Anderson impurity
is

Hd = ǫd(c
†
d↑cd↑ + c†d↓cd↓) + Uc†d↑cd↑c

†
d↓cd↓, (3)

where ǫd is the impurity energy level and U is the on-site
Coulomb interaction. The coupling Hamiltonian between
the impurity and electrons in TI has the form

Ht =
∑

kσ

(Vaka
†
kσcdσ + Vbkb

†
kσcdσ +H.c.), (4)

where Va(b)k represents the overlap or hybridization ma-
trix element between the magnetic impurity and conduc-
tion electrons in two bands.

B. Slave-boson mean field

Here we consider a strong on-site Coulomb interaction
on the impurity, i.e., U → ∞. In this limit, no double
occupancy on the impurity is allowed. We introduce the
auxiliary fields

c†dσ = d†σb, cdσ = b†dσ,

where the boson operator b† creates an empty state and
the fermion operator d†σ creates a singly occupied state
on the impurity. These two fields obey the local con-
straint b†b+

∑

σ d
†d = 1.40 In the mean-field approxima-

tion, both the annihilation and creation boson operators
b and b† are replaced by a complex number b0 and its
complex conjugate b∗0, and the local constraint is realized
by introducing a Lagrangian multiplier λ0. Substituting
the auxiliary fields in the original Hamiltonians (3) and
(4), one can get

Hd = ǫ̃d(d
†
↑d↑ + d†↓d↓) + λ0(b

2
0 − 1)

and

Ht =
∑

kσ

(Ṽaka
†
kσdσ + Ṽbkb

†
kσdσ +H.c.)

with the renormalized parameters ǫ̃d = ǫd + λ0 and
Ṽa(b)k = b0Va(b)k. The slave-boson mean-field approxi-
mation was first introduced to describe the low-energy
physics of the conventional Anderson impurity model
in the mixed-valence regime.41 This method may pro-
duce the low-energy physics in unconventional density-
waves (e.g., d-wave superconductors,42 graphene electron
systems,43 etc.).

C. Green’s functions

Utilizing the method of the equation of motion for
the impurity electron, one finally obtains the retarded
Green’s function of the impurity electron,

〈〈dσ|d†σ〉〉 =
ω − ǫ̃d − Σ0(ω) + σΣz(ω)

[ω − ǫ̃d − Σ0(ω)]2 −
∑

i [Σi(ω)]
2 , (5)

where the self-energy functions are defined as

Σ0(ω) =
∑

k

(ω +Ak)Ṽ
2
ak + (ω −Ak)Ṽ

2
bk

ω2 − ~2v2Fk
2 −A2

k

,

Σi(ω) =
∑

k

2~vFkiṼakṼbk

ω2 − ~2v2Fk
2 −A2

k

, (6)

(i = x, y, z), and Ak = mv2F −B~
2k2 .

It is assumed that the hybridization strength Va(b)k

does not depend on momentum, Va(b)k = Va(b). In the
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absence of an external magnetic field, the interaction self-
energy Σi(ω) = 0 and the electronic Green’s function can
be simplified as

〈〈dσ |d†σ〉〉 =
1

ω − ǫ̃d − Σ0(ω)
, (7)

which has the same form as those of the conventional
Anderson impurity model. Additionally, we consider the
case that the impurity is symmetrically coupled with two
orbits, i.e., V0 = Va = Vb, and the self-energy Σ0(ω) in
d-dimensions (d = 2, 3) is thus simplified as

Σ0(ω) = ω
∑

k

2Ṽ 2
0

ω2 − ~2v2F k
2 −A2

k

=
dωṼ 2

0 N0

kdF

∫ ∞

0

dk
kd−1

ω2 − ~2v2F k
2 −A2

k

, (8)

where N0 is the number of lattice sites and kF is the
Fermi wave vector for the bulk of a TI.

D. Normal and band-inverted regimes

From the poles of self-energy function Σ0(ω), one ob-
tains the energy spectrum of the bulk,

ξ(k) = ±
√

~2v2F k
2 + (mv2F −B~2k2)2.

The energy spectrum shows a complex dependence on
the energy gap and momentum. Such energy spectra
can be mapped onto many important cases of impu-
rity problems. Near the band edges, the model re-
duces to the Anderson problem in normal insulators
or semiconductors.32,33 The quantum impurity model in
graphene or surface states of the TIs can be recovered by
setting m = 0 and B = 0.16,17,22,43

In Fig. 1 we present the energy spectra as a function
of k for different values of mB. It can be seen from the
energy spectrum that, for mB < 1/2, the band edges are
located at k = 0 and the energy gap is

∆N ≡ 2|m|v2F
as in normal insulators. However, for the case of mB >
1/2, the band edges appear at a finite k with a gap

∆I ≡
√
4mB − 1

|B| v2F .

For convenience, one defines

g0(ǫ) =
dN0Ṽ

2
0 ǫ

[

√

ǫ2 −∆2
I/4− 1−2mB

2|B| v2F

]

d−2

2

4(|B|~2k2F )
d
2

√

ǫ2 −∆2
I/4

(9)

when ǫ > ∆N/2, and

g1(ǫ) =
dN0Ṽ

2
0 ǫ

[

√

ǫ2 −∆2
I/4 +

2mB−1
2|B| v2F

]

d−2

2

4(|B|~2k2F )
d
2

√

ǫ2 −∆2
I/4

(10)
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FIG. 1: The energy spectrum ǫk for different mB values: (a)
mB = −1.0, −0.4, 0.4; (b) mB = 0.4, 1.0, 3.0. Here mv2F
is taken as the energy unit. For mB < 1/2, the energy gap
is located at k = 0 and equals ∆N ≡ 2|m|v2F . For mB >
1/2, the energy gap is located at a finite k and equals ∆I ≡√

4mB−1

|B| v2F .

when both ∆I/2 < ǫ < ∆N/2 and mB > 1/2 are satis-
fied.
For the case of mB < 1/2, one gets

Σ0(ω) =

∫ ∞

∆N
2

dξg0(ξ)

[

1

ω − ξ
+

1

ω + ξ

]

. (11)

After analytical continuation, Σ0(ω) = ReΣ0(ω) +
ImΣ0(ω) with

ReΣ0(ω) = P

∫ ∞

∆N
2

dξg0(ξ)

[

1

ω − ξ
+

1

ω + ξ

]

(12)

and

ImΣ0(ω) = −g0(ω)Θ(|ω| − ∆N

2
) (13)

with P denoting the principal value.
For the case ofmB > 1/2, the real and imaginary parts

of the self-energy are given by

ReΣ0(ω) = P

[

∫

∆N
2

∆I
2

dξg2(ξ)

+

∫ ∞

∆N
2

dξg0(ξ)

]

(

1

ω − ξ
+

1

ω + ξ

)

(14)

and

ImΣ0(ω) = −
[

g2(ω)Θ(|ω| − ∆I

2
)Θ(

∆N

2
− |ω|)

+ g0(ω)Θ(|ω| − ∆N

2
)

]

, (15)
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where g2(ω) = g0(ω) + g1(ω). Because ImΣ0 is propor-
tional to the density of states of the bulk electrons, the
density of states is discontinuous at the point ∆N/2. For
a relatively large B and small m, the energy gap reduces
to a value much smaller than ∆N .
The free energy F of the system is given by the parti-

tion function

F = − 1

β
lnZ = − 1

β

∫ ∞

−∞

ln(1 + e−β(ω−µ))ρ̄(ω)dω,

where ρ̄(ω) = Σkδ(ω − ǫk), ǫk are the one-electron en-
ergies of the system, µ is the chemical potential of the
TI, and β = 1/kBT is the system temperature. ρ̄(ω) can
be calculated from the poles of the one-electron Green’s
function and is given by

ρ̄(ω) =
Im

π

∑

k

4ω

ω2 − ~2v2F k
2 −A2

k

+ 2
Im

π

∂

∂ω
ln〈〈dσ |d†σ〉〉.

Minimizing the free energy of the system with respect
to λ0 and b0, one obtains a set of self-consistent equations

2

∫ ∞

−∞

dωf(ω)ρd(ω) + b20 − 1 = 0,

2

∫ ∞

−∞

dωf(ω)(ω − ǫ̃d)ρd(ω) + λ0b
2
0 = 0, (16)

where f(ω) = [1+e(ω−µ)/kBT ]−1 is the Fermi distribution
function and the density of states ρd(ω) of the impurity

is given by

ρd(ω) = − 1

π

ImΣ0(ω)

[ω − ǫ̃d − ReΣ0(ω)]2 + ImΣ0(ω)2
.

In the calculation, it is limited to zero temperature,
i.e., kBT = 0. ∆N/2 is taken as the energy unit and Γ0 =
πρ0V

2
0 represents the hybridization strength between the

impurity and the bulk electrons, where ρ0 = N0/2D is
the density of states per spin at the chemical potential
and D =

√

(~vF kF )2 + (mv2F −B~2k2F )
2 is a cut-off of

the band width. In the following, we show the results of
quantum impurity in three-dimensional TIs for Γ0 = 0.5
and D = 30.0.

III. IN-GAP BOUND STATES AND THE

KONDO EFFECT

A. Self-energy

First, we discuss the self-energy Σ0(ω), which depends
on the energy spectrum of the bulk bands. In the bulk
of the TI, the strong spin-orbit coupling couples the con-
duction and valence bands, leading to the non-parabolic
energy spectrum. The self-energy Σ0(ω) reveals not only
the poles of the Green’s function, but also the inhomo-
geneous density of states due to the impurity-induced
states.
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FIG. 2: The real and imaginary parts of the self-energy Σ0(ω) for different mB values. The shaded part represents the region
of energy gap.

Figure 2 shows the real and imaginary parts of Σ0(ω)
versus ω for different values of mB. Previous studies

based on the Chern number and Z2 invariant indicate
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that the band-inverted case with mB > 0 is topologi-
cally nontrivial, while the normal case with mB < 0 is
topologically trivial.37–39 It is shown that in Fig. 2 both
the real and imaginary parts of Σ0(ω) are quite different
for opposite signs of mB. The real part ReΣ0(ω) deter-
mines the level positions of both the Kondo resonance
and the bound states, according to the solutions to the
equation

ω = ǫ̃d +ReΣ0(ω). (17)

For mB > 1/2, ReΣ0(ω) diverges rapidly near the edges
of the gap, thus there always exist bound states within
the gap. When the impurity level |ǫd| is much larger than
∆I/2, the bound states are very close to the bottom of
the conduction bands for ǫd ≫ ∆I/2 or the top of the
valence band for ǫd ≪ −∆I/2, which is similar to the case

of s-wave superconductors.44 More importantly, Eq. (17)
has an extra solution in the band region, corresponding
to the coexisting Kondo resonance. For mB < 0, there
is only one solution to Eq. (17), so the Kondo effect and
the bound states do not appear simultaneously.

The imaginary part ImΣ0(ω) is proportional to the
density of states of bulk electrons. For mB > 1/2, the
energy gap is ∆I , thus ImΣ0(ω) = 0 in the region of
ω ∈ [−∆I/2,∆I/2]. At the band edges ±∆I/2, ImΣ0(ω)
shows divergences. In the region |ω| ∈ [∆I/2,∆N/2], the
divergences drops rapidly with the increasing |ω|. For
|ω| > ∆N/2, ImΣ0(ω) begins to increase as a function
of

√
ω. For 0 < mB < 1/2, the divergences at the band

edges ±∆N/2 disappear gradually with decreasing mB.
For mB < 0, ImΣ0(ω) at the band edges is always zero
and increases as a function of

√
ω for |ω| > ∆N/2.

0

5

10

-2 0 2 4
0

5

10

-2 0 2 4 -2 0 2 4 -2 0 2 4 -2 0 2 4 -2 0 2 4

 

mB=1.0

d=-2.0

 

 

d=-1.0

 

 

d=-0.5

 

 

d=0.5

 

 

d=1.0

 

 

d=2.0

d(
)

mB=-1.0

d=-2.0

 

d=-1.0

 

d=-0.5

 

d=0.5

 

d=1.0

 

d=2.0

 

     

     

 

 

FIG. 3: The density of states of the impurity electron is shown for different impurity levels ǫd = −2.0, −1.0, −0.5, 0.5, 1.0,
and 2.0 (from left to right) in (a) topological nontrivial case mB = 1.0 and (b) topological trivial case mB = −1.0, where the
chemical potential µ = 0.0 lies in the gap.

B. Density of states of the impurity

From the self-energy, the Kondo resonance and the
bound states have been discussed qualitatively. The den-
sity of states ρd(ω) of the impurity for the cases that the
chemical potential µ lies in the gap and in the valence
bands are presented in Figs. 3 and 4, respectively. It
is demonstrated that in both cases the Kondo resonance
and bound states coexist for mB > 0, while only one
of them appears for mB < 0. For mB > 0, the bound
states are very close to the band edges when ǫ̃d is far

away from the energy gap. In the previous studies,31–33

it has been argued that when the energy gap exceeded
an critical value (∆/TK = 2.0 predicted by slave-boson
mean-field theory32 and TK is the Kondo temperature),
the Kondo effect no longer appears in the insulators
with an energy-independent density of states. However,
for a complex dispersion relation, the density of states
is strongly energy-resolved and quite different near the
band edges for the band-inverted and normal cases. In
the band-inverted case, ρd(±∆I/2) equals zero exactly,
due to the divergence of ImΣ0(ω) near the band edges.
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FIG. 4: The density of states of the impurity electron is shown for different impurity levels ǫd = ǫdc (ǫdc is the critical point
at which ǫ̃d = µ), −2.5, −0.5, 0.5, and 2.0 (from left to right) in (a) topological nontrivial case mB = 1.0 and (b) topological
trivial case mB = −1.0, where the chemical potential µ = −2.0 lies in the valence band.

For |ω| ≫ ∆I , ρd(ω) also approaches zero. Therefore,
no matter how µ lies in the gap or in the bands, there
are always two low-energy resonance peaks lying near the
band edges for mB > 1/2, as shown in the upper panels
of Figs. 3 and 4. When the chemical potential µ lies in
the valence band, the low-energy resonance peak becomes
narrow and its position moves to µ with decreasing ǫd.
Near the critical point ǫdc, the resonance peak becomes
very sharp and close to the chemical potential.

In Fig. 5 we present the positions of the in-gap bound
states and low-energy Kondo resonance as functions of
the impurity level ǫd in the normal and band-inverted
cases. The bound states show quite different behaviors
in the two cases. For the normal case, the position of the
bound states is almost linear in ǫd. The in-gap bound
states start from the point ǫdc = −∆N/2, corresponding
to the top of the valence bands. At the bottom of the
conduction bands, the bound states enter the conduc-
tion bands continuously, and then the low-energy Kondo
resonance peak appears. However, for the band-inverted
case, the bound states in the gap and the Kondo res-
onance can form simultaneously for the impurity level
ǫd > ǫdc. In this case, the positions of these two states
do not connect at any point. For an ǫd far away from the
chemical potential, the in-gap bound states are very close
to the band edges. Thus they are vulnerable to small per-
turbation or thermal fluctuation, and may merge into the
conduction bands easily.

Above we demonstrate that the presence of the in-gap
bound states is determined by the topological nature of
the TI. For real TI materials such as Bi2Se3 and Bi2Te3,
the system parameters from first principles calculations4

are (mv2F , ~vF , B) = (0.28eV, 3.2eVÅ, 33eVÅ2) and
(0.30eV, 2.9eVÅ, 57eVÅ2), respectively. Correspond-
ingly, mB ∼ 0.9 for Bi2Se3 and 2.0 for Bi2Te3. Therefore,
it is expected that the coexistence of in-gap bound state
and Kondo effect could be observed in these two materi-
als.

C. Broadened mixed-valence regime for

band-inverted case

The mean field b20 introduced in Sec. II B gives the
probability that the impurity is empty. Figure 6 presents
the dependence of b20 on the impurity energy level ǫd for
different values of mB. b20 = 0 when the impurity level ǫd
is much lower than the chemical potential, which means
that the impurity is singly occupied. In this case, the
charge fluctuation between the impurity and the bulk
bands is suppressed. When ǫd exceeds a threshold value,
b20 begins to increase from 0 and saturates at 1 when
ǫd ≫ µ. The mixed-valance regime is defined as where
b20 changes from 0 to 1. Figure 6 presents b2 when the
chemical potential lies in the gap and in the valence
bands. As shown in Fig. 6, the mixed-valence regime
is broader for the band-inverted case with mB > 0. For
the normal case with mB < 0, b20 increases more rapidly,
and the mixed-valence regime shrinks into a very nar-
row regime. This kind of narrow mixed-valence regime
has also been found in unconventional density waves and
d-wave superconductors.28,31 For mB < 0, the density
of states of bulk electrons vanishes at the band edges.
The reduction of the density of states at the band edges
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FIG. 5: The positions of the bound states and low-energy
Kondo resonance peak as functions of impurity level ǫd in
(a) the topological nontrivial case mB = 1.0, 0.4 and (b) the
topological trivial case mB = −1.0,−0.4. The chemical po-
tential is taken as µ = 0.0.

implies that the Kondo resonance peak is narrower and
b20 decreases to zero faster than those in the conventional
case. From the self-consistent equations, near the critical
point, the critical value of ǫd is determined by

ǫdc = 2

∫ µ

−D

dω
g(ω)

ω − ǫ̃d
,

where g(ω) is proportional to the density of states of the
background electrons. In the band-inverted case, g(ω)
diverges near the band edges, which results in a large
integral value as well as large |ǫdc|. In contrast, g(ω)
reduces to zero near the band edges in the normal case.
In this case, |ǫdc| is smaller and the mixed-valence regime
becomes narrower.
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FIG. 6: The dependence of the order parameter b20 on the
impurity energy level ǫd for (a) the chemical potential in the
gap µ = 0.0 and (b) in the valence band µ = −2.0. Here
mB = −2.0 and −0.2 represent the topological nontrivial
case and mB = 0.2, 0.5, and 1.0 correspond the topological
trivial case.

D. In two dimensions

The preceding sections present the numerical results in
three dimensions. In this section, we briefly discuss the
behaviors of the quantum impurity in the bulk of two-
dimensional TIs. In practice, the two-dimensional case is
more accessible by the scanning tunneling miscroscope.14

At the mean-field level, the difference between two and
three dimensions arises from the self-energy Σ0(ω), which
in two dimensions can be expressed as

Σ0(ω) =
2ωṼ 2

0 N0

kdF

∫ ∞

0

dk
k

ω2 − ~2v2F k
2 −A2

k

.

A detailed discussion about the properties of Σ0(ω) in
two dimensions is presented in Ref. 45, in which a δ-
impurity scattering is considered. It can be deduced
that, at the point ω = ∆N/2, the self-energy Σ0(ω) is fi-
nite in three dimensions, while in two dimensions, Σ0(ω)
has logarithmic divergence to −(+)∞ at ω → +(−)|m|
for TIs and has logarithmic divergence to +(−)∞ at
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ω → −(+)|m| for normal insulators.45 This means that,
when the Anderson impurity couples only to one band,
the topological phase transition can be seen from the po-
sition of impurity bound states as the system changes
from normal insulator to TI. Besides, the physical prop-
erties of the quantum impurity are similar qualitatively in
two and three dimensions, e.g., the mixed-valence regime
in both cases is much broader for mB > 0 than the case
of mB < 0.

IV. SELF-SCREENING OF THE KONDO

EFFECT

topologically trivial casetopologically nontrivial case

F

(b)(a)

F

impurity

bound state J
impurity

FIG. 7: Illustration of the Kondo effect for (a) topological
nontrivial case and (b) trivial case.

We have shown that the quantum impurity may in-
duce in-gap bound states in the band-inverted case, lead-
ing to the coexistence of the Kondo resonance and the
bound states. This indicates that the Kondo resonance
and bound state originate from two different mechanisms.
The singly-occupied quantum impurity behaves like a sin-
gle spin, and gives the Kondo resonance when the sys-
tem is in the Kondo regime. The bound state, on the
other hand, is induced when the system is topologically
nontrivial. Even a potential scattering18 or a vacancy19

could produce the in-gap bound state in the bulk of TIs.
Therefore, the in-gap bound state could be considered as
a degree of freedom, while its energy is determined by
the impurity. When the chemical potential of the TI lies
in the conduction bands, both the bound states and the
impurity level are occupied, and each of them behaves
like a single localized spin (as illustrated in Fig. 7). It
is quite naturally to expect the exchange interaction be-
tween two quantum spins, which is usually due to second-
order virtual hopping or the Ruderman-Kittel-Kasuya-
Yosida (RKKY) mechanism mediated by itinerant elec-
trons. If the interaction is antiferromagnetic, the two
spins form a singlet, which will compete with the many-
body singlet formed by the impurity spin and conduction
electrons, quenching their Kondo effect. Different from

the intensively studied two-impurity Kondo problem,46,47

here the quenched Kondo effect is induced by the spin of
the bound states rendered by the impurity itself. There-
fore, we refer to this effect as the self-screening of the
Kondo effect.

A. Exchange interaction between impurity spin

and impurity-induced bound-state spin

The self-screened Kondo effect can be illustrated by
the model Hamiltonian as follows

H = H0 +
∑

σ

ǫdd
†
σdσ +

∑

σ

ǫff
†
σfσ + JSd · Sf

+
∑

kσ

(Vdbda
†
kσdσ + Vdbdb

†
kσdσ +H.c.)

+
∑

kσ

(Vf bfa
†
kσfσ + Vf bfb

†
kσfσ +H.c.)

+λd(
∑

σ

d†σdσ + b2d − 1) + λf (
∑

σ

f †
σfσ + b2f − 1),

(18)

where ǫf is the impurity-induced bound-state level and
H0 is the Hamiltonian for the bulk of the TI [Eq. (2)].
The term JSd · Sf describes the exchange interaction
between the impurity spin and bound-state spin. It is
noted that here the quantum impurity and its induced in-
gap bound state are considered as two degrees of freedom.
The above effective Hamiltonian describes the low-

energy behavior of the Anderson impurity in the non-
trivial TI phase of the system. It can be derived from
a renormalization-group approach where the high-energy
degree of the system is integrated out systematically. The
derivation of the effective coupling between the bound
state and Kondo resonance requires a technique beyond
the slave-boson mean-field theory, which was presented
recently.48 Using a weak coupling renormalization group
analysis, it has been shown that the exchange interaction
J between the d and induced f spins may be renormalized
dynamically to either positive or negative values. In the
regime where charge fluctuations in both d and f states
are quenched, the system is in the self-screened Kondo
regime for J > 0 and in the SO(3) Kondo regime for
J < 0,48 respectively. Here we introduce the exchange
interaction J and perform the slave-boson approach to
describe the Kondo physics for small charge fluctuations
in the regime of J > 0.

B. Order parameter for the exchange interaction

Similar to the treatment in Sec. II B, two slave-boson
operators bd and bf are introduced to replace cd(f)σ by

b†d(f)d(f)σ in the large-U limit. The spin exchange term

JSd · Sf = J
∑

σ,σ′ d†σdσ′f †
σ′fσ can be decoupled by in-

troducing a valence-bond field ∆0 = −∑

σ〈d†σfσ〉. In the
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mean-field approximation47

JSd · Sf → J∆0

∑

σ

(d†σfσ + f †
σdσ) + J∆2

0,

the Hamiltonian becomes quadratic in the fermion opera-
tors. The problem is still far from trivial as bd, bf , λd, λf ,
∆0, and ǫf need to be determined self-consistently. Dif-
ferent from the ordinary Kondo problem, here the bound-
state energy ǫf also enters the self-consistent equations.
By minimizing the ground-state energy, one obtains a set
of nonlinear self-consistent equations

∑

σ

〈d†σdσ〉+ b2d − 1 = 0,

∑

σ

〈f †
σfσ〉+ b2f − 1 = 0,

∑

σ

(〈d†σfσ〉+ 〈f †
σdσ〉) + 2∆0 = 0,

∑

k,σ

(Vd〈a†kσdσ〉+ Vd〈b†kσdσ〉+ h.c.) + 2bdλd = 0,

∑

k,σ

(Vf 〈a†kσfσ〉+ Vf 〈b†kσfσ〉+ h.c.) + 2bfλf = 0.(19)

To simplify the calculation, we assume that the bound
states are always singly occupied (bf = 0) and decoupled
from the conduction electrons. In this case, the in-gap
bound states act like a single spin. Correspondingly, the
constraints for the bound states becomes λf (

∑

σ〈f †
σfσ〉−

1) and λf is contained in the related Green’s functions.

C. Green’s functions

Performing the equation of motion procedure, we can
obtain the Green’s functions for the impurity and the
bound states,

〈〈dσ|d†σ〉〉 =
1

ω − ǫ̃d − J2∆2
0

ω−ǫ̃f
− Σ0(ω)

,

〈〈fσ|f †
σ〉〉 =

1

ω − ǫ̃f − J2∆2
0

ω−ǫ̃d−Σ0(ω)

, (20)

where ǫ̃d = ǫd + λd, ǫ̃f = ǫf + λf , and Σ0(ω) =

ω
∑

k
2Ṽ 2

0

ω2−~2v2

F
k2−A2

k

.

In the limit ∆0 → 0, the impurity and the bound states
are decoupled and the results reduce to those when J = 0.
When the spin exchange interaction exceeds a critical Jc,
a nonzero order parameter ∆0 appears and the Kondo
peak near the chemical potential is expected to split.
From the Green’s functions 〈〈dσ|d†σ〉〉, one obtains the
self-consistent equation for the bound states,

ǫf − ǫ̃d −
J2∆2

0

ǫf − ǫ̃f
− Σ0(ǫf ) = 0.

Defining α(ω) = [ω − ǫ̃d −ReΣ0(ω)](ω − ǫ̃f )− J2∆2
0 and

β(ω) = ImΣ0(ω)(ω − ǫ̃f ), the self-consistent equations
are derived as

− 2

π

∫ µ

−∞

dω
(ω − ǫ̃f )β(ω)

α(ω)2 + β(ω)2
+ b2d − 1 = 0,

− 2

π

∫ µ

−∞

dω
J2∆2

0ImΣ0(ω)

α(ω)2 + β(ω)2
= 1,

− 2

π

∫ µ

−∞

dω
J∆0β(ω)

α(ω)2 + β(ω)2
+∆0 = 0,

2

π

∫ µ

−∞

dω
[(ω − ǫ̃d)(ω − ǫ̃f )− J2∆2

0]β(ω)

α(ω)2 + β(ω)2
= λdb

2
d,

α(ǫf ) = 0. (21)

This set of equations can be solved numerically.

D. Self-screened Kondo effect

Figure 8 presents the effects of bound-state spin on the
Kondo effect for different exchange interaction strength
J . The chemical potential of the bulk of the TI is tuned
into the conduction bands, so there is a Kondo peak near
the chemical potential and the bound states are occupied
by a single electron. When J exceeds a critical value Jc,
the order parameter ∆0 begins to increase from zero, then
quickly to 1 with the increase of J . Figure 8(b) shows the
density of states of the impurity as a function of energy
for J = 0.0, 0.04, and 0.08. With the increase of J , the
resonance peak splits. The splitting of the Kondo peak
increases with J . As a result, the density of states near
ǫ̃d reduces to a very small value, corresponding to the
self-screening of the Kondo resonance.
It should be noted that the strength of exchange inter-

action between the impurity and the in-gap bound state
is the key parameter of the predicted self-screened Kondo
effect. The exchange strength should be evaluated subtly,
for instance, from the first-principles calculation. Our
calculation indicates that a small exchange interaction
could make the Kondo effect break down.
Above we assumed that the bound states are singly-

occupied in the large-U limit. If the Coulomb repulsion
energy on the bound states is finite and the chemical po-
tential is high enough, it is possible that the bound states
are occupied by two electrons, and they form a singlet due
to the Pauli exclusion principle. In this limit, the bound-
state spin is decoupled from the impurity spin, and the
Kondo effect originating from the interaction between the
impurity spin and conduction electrons can recover.
An impurity- or vacancy- induced in-gap bound state

is a special feature of TIs, which is absent in normal
insulators. Therefore, the bound state may play an im-
portant role when the Kondo physics is considered in
TIs. For a strong exchange interaction between impurity
and in-gap bound state, the Kondo effect may be bro-
ken down when the chemical potential is tuned properly.
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FIG. 8: (a) The order parameter ∆0 as a function of J . Pa-
rameters: ǫd = 1.0, µ = 2.0, and mB = 1.0. (b) The density
of states of the impurity for J = 0.0, 0.04, and 0.08.

Actually, several experiments have been performed to in-
vestigate the physical properties of magnetic impurity-
doped topological materials, such as Mn-doped BiTe.49

The self-screening effect is expected to be observed in
these systems.

V. SUMMARY

In summary, we have studied the Kondo effect and the
formation of in-gap bound states induced by an Ander-
son impurity coupled with the bulk states of topological
insulators. It is demonstrated that the positions of the
Kondo peak and bound states strongly depend on the
topological properties, the chemical potential, and other
parameters of the system. The behaviors of the resonance
level in the bulk of TIs differ from those for simple met-
als and normal insulators. Due to the divergence of the
density of states near the band edges, the mixed-valence
regime is much broader in the band-inverted case, while
it shrinks to a very narrow regime in the normal case.
For the band-inverted case, the in-gap bound states and
the Kondo resonance can coexist. However, only one of
them exists in the normal insulators. When the impu-
rity energy level is far away from the chemical potential,
the in-gap bound states are very close to the band edges
and can be considered as merging into the bulk. Further-
more, we show that a self-screening Kondo effect may be
induced by taking the interaction between the impurity
spin and bound-state spin into account.

Note added: while this manuscript was under review,
we became aware of a work [50], wherein the scattering
of dilute magnetic impurities placed on the surface of TIs
is investigated.
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