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Online Policies for Throughput Maximization of
Energy-Constrained Wireless-Powered

Communication Systems
Xian Li, Xiangyun Zhou, Changyin Sun, and Derrick Wing Kwan Ng

Abstract—In this paper, we consider the design of online
transmission policies in a single-user wireless-powered commu-
nication system over an infinite horizon, aiming at maximizing
the long-term system throughput for the user equipment (UE)
subject to a given energy budget. The problem is formulated
as a constrained Markov decision process (CMDP) problem,
which is subsequently converted into an equivalent Markov
decision process (MDP) problem via the Lagrangian approach.
The corresponding optimal resource allocation policy is obtained
through jointly solving the corresponding MDP problem and
updating the Lagrangian multiplier. To reduce the complexity,
a sub-optimal policy named “quasi-best-effort” is proposed,
where the transmit power of the UE is structurally designed
so that in each block the UE either exhausts its entire battery
energy for transmission or suspends its transmission. To validate
the effectiveness of our proposed policy, extensive numerical
simulations are conducted with various system parameters. The
results show that the proposed quasi-best-effort policy requires
far less computation time but achieves a similar long-term
throughput performance as the optimal policy.

Index Terms—Wireless-powered communication, long-term
throughput, energy budget, constrained Markov decision process.

I. INTRODUCTION

Radio-frequency (RF) energy harvesting (EH) has recently
been shown to be a potential technology to provide perpetual
energy supply in energy-constrained wireless networks [2]–
[4]. As one of the most attractive applications of RF-based
EH technology, wireless powered communication network
(WPCN) has attracted a lot of attention. To realize an efficient
WPCN, in practice, a hybrid access point (H-AP) [5], [6] or
a dedicated power beacon (PB) [7], [8] is usually deployed to
broadcast wireless energy. Then, based on the “harvest-then-
transmit” protocol [6], energy-constrained user equipments
(UEs) first harvest energy from the H-AP or PB in downlink
during the wireless energy transfer (WET) period and then
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perform wireless information transfer (WIT) in uplink to
transmit their data to the hybrid or separate AP.

The system performance of WPCNs in terms of throughput,
outage, and energy efficiency were thoroughly studied in the
recent literature [5]–[11]. In [9], the optimal time and power
allocation was jointly designed to maximize the throughput
of a generalized WPCN, where users are equipped with
constant energy supplies along with RF energy harvesting
circuits. In order to tackle the “doubly-near-far” problem, user
cooperation in WPCNs was proposed in [10], where the user
closer to the H-AP was designed to devote part of its time
and energy resources to help relay the information of the far
user to the H-AP, so as to achieve a more balanced system
throughput. In [11], the authors extended the study into a full-
duplex (FD) scenario, where the WPCN consists of a FD H-AP
and several UEs. By jointly optimizing the time allocation for
the WET and WIT as well as the transmit power allocation
at the H-AP, the weighted sum-throughput of the system was
maximized. However, most of these works assumed that all
the harvested RF energy is exhausted immediately within a
transmission block without exploiting the possibility of energy
storage and considering long-term system performance. In
practice, each transceiver in a WPCN is usually equipped with
certain energy storage, e.g., battery or capacitor. When the
communication channel suffers from deep fading, it is more
reasonable to store part of or even all the harvested energy in
the battery rather than deplete it instantly. Thus in this paper,
we emphasize on the long-term system performance of battery-
powered communication networks, in which the harvested
energy can be stored and exploited for future operations.

Some research efforts have been devoted to improving the
system performance in the long run. In [12], a WPCN in
which each wireless node carrying an energy queue and a
data queue was studied. Based on the states of the energy
and data queues, the Lyapunov optimization technique was
applied to design an online stochastic control algorithm, so as
to minimize the expected energy consumption while stabilizing
the data queues of all nodes. Via jointly utilizing the theory
of stochastic geometry (Geo) and dynamic programming (DP),
a Geo-DP-based online policy was proposed in [13] to cope
with the fluctuations of the on-grid power prices, the amount
of the harvested energy, as well as the network traffic loads
and thereby minimizing the long-term on-grid energy cost.
With the assumption of a simple transmission policy, whereby
UE performs data transmission only if the battery level is no
smaller than a required value, the spatial throughput maxi-
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mization problem of a large-scale WPCN with multiple UEs
and multiple H-APs was investigated in [14]. In [15], two
simple online transmission policies for a single-user WPCN
were investigated. Considering Nakagami fading channels, the
limiting distribution of the stored energy at the EH node as
well as the analytical expressions for outage probability were
obtained for both policies. By assuming the availability of
non-causal channel state information (CSI) and causal CSI
at the central controller, an offline algorithm and an online
algorithm were proposed to improve the achievable rate over
multiple slots for an orthogonal frequency division multiplex-
ing (OFDM)-based WPCN in [16], respectively. In [17], the
long-term throughput maximization problem of a two-user
WPCN was addressed, where the H-AP was assumed to have
an unlimited energy supply. Based on the theory of Markov
decision process, the optimal policy as well as an approximate
strategy were derived to maximize the system throughput over
an infinite time horizon. Moreover, this work was extended
to a FD scenario in [18] where the H-AP is able to transfer
energy and receive information data simultaneously. Besides,
the corresponding optimal policy for the FD case was obtained
and the long-term performance gap between the full-duplex
WPCN and the half-duplex WPCN was discussed. However,
these works do not consider the temporal correlation of the
time-varying channels, which can be exploited to improve
the system performance. Also, the energy consumption of the
H-AP in the previous studies, e.g., [14]–[18], has not been
considered in their design.

In this paper, we consider a single-user WPCN where the
UE is equipped with a finite-capacity battery. The system
model is most closely related to that in [17]. However, there
are three fundamental differences. First, the finite state Markov
channel (FSMC) model is utilized in our work to capture the
temporal-correlation of the channel. Second, the circuit power
of the H-AP and the UE, both of which are closely related
to the long-term system performance, are considered for the
accurate estimation of the system energy consumption. Finally,
we devote our effort to the performance optimization in an
energy-constrained WPCN, i.e., to maximize the long-term
system throughput with a limited energy budget. Our main
contributions are summarized as follow.

1) With the consideration of limited system energy budget,
we formulate the long-term throughput optimization problem
as a constrained Markov decision process (CMDP) problem.
The problem of finding the optimal online policy is solved
through the Lagrangian approach. Besides, by carefully ex-
ploiting the structure of the problem, the number of vari-
ables to be numerically optimized is reduced, such that the
computational complexity is cut down without loss of system
performance.

2) The offline version of the CMDP problem is considered
and the property of the corresponding optimal solution is
analyzed. Through mimicking the structure of the offline
optimal solution, we propose a sub-optimal online policy
named “quasi-best-effort”, which either exhausts the battery
at the UE or keeps the UE silent in each time block.

3) Numerical simulations in terms of the long-term through-
put and the computation time performance are carried out

in different practical scenarios for the comparison between
the proposed quasi-best-effort policy and the optimal policy.
The results demonstrate that the proposed sub-optimal policy
shows comparable performance to the optimal policy but
requires considerable less computation time.

II. SYSTEM MODEL

In this paper, we consider a WPCN consisting of a H-AP
and a single-antenna UE equipped with a rechargeable battery.
The system model is shown in Fig. 1. The H-AP is equipped
with a directional antenna. The channel between the H-AP and
the UE is assumed to be block fading and time-correlated, e.g.,
the channel remains constant in each time block but varies
from block to block. The channel power gain in block t is
Ht = θtd−α, where θt captures the multipath fading, d is the
distance between the H-AP and the UE, and α is the path loss
exponent. In each block, a WET period is followed by a WIT
period. The UE first harvests energy from the H-AP and store
it into the battery during WET. Then during the following WIT
period, the UE transmits its data to the H-AP using the stored
energy in the battery. We assume that in the current block,
perfect CSI as well as the information of the UE’s battery state
is available at the H-AP for resource allocation. In practice,
this information can be acquired in the training phase at the
beginning of each block. In particular, the battery state of the
UE and the CSI can be fed back to the H-AP. Compared to
the durations of WET and WIT, the time and energy spent in
training phase are very small and thus are neglected in our
work. Moreover, to model the imperfect operation of the UE,
similar to [19], we assume that the UE has the probability of
λ ∈ [0, 1) to survive the hardware (or software) failure and
continue to operate normally in a block.

WET

WIT

UE H-AP

Harvested 

energy

Battery

Fig. 1: System model of a WPCN.

In practical applications, the communication system is re-
quired to be optimized under some given constraints [14], [20].
In this paper, we investigate the problem of long-term system
throughput optimization under a given energy constraint and
focus on the design of online policies. The considered problem
can be formulated as a CMDP problem (see details in Sec.
III) through the tuple, {S,A,P , r(·), e(·)}, where S is the
system state space, A is the action space, P is the probability
transition matrix, and r(·) and e(·) are the reward function
and the cost function, respectively. In the following, detailed
descriptions of these five elements are provided.

A. System States

For the considered system, in block t, the system state
st ∈ S contains the channel and battery information, i.e.,
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st = [ht, bt ], where ht is the channel state in block t and
bt is the battery state in block t, respectively. Quantized
channel power gain and battery energy storage are considered
in this paper. Thus the number of system state is finite
and countable. Specifically, the system state space S can be
expressed as S = H × B, where H , {1, 2, ..., k, ...,K} and
B , {0, 1, 2, ..., l, ..., L} define the set of channel state and
battery state, respectively. The battery is at state 0 when it is
exhausted.

For channel state ht ∈ H , a finite-state Markov
channel model is used to describe the time-varying be-
haviour of the fading channel [21]–[27]. Denote by Γ =
[Θ1,Θ2, ...,Θk, ...ΘK+1] × d−α the channel gain boundaries in
the increasing order with Θ1 = 0 and ΘK+1 = ∞. The channel
state in the t-th block is said to be at state k (i.e., ht = k), if
Θk≤θt < Θk+1. That is to say, a range of channel power gain
values belong to the same channel state.

We assume that there is only a one-step channel state
transition from block to block. Denoting πk as the steady
state probability of the channel being in state k and assuming
equiprobable partition1 of the channel gain, i.e. πk = 1

K , ∀k ∈
{1, 2, ...,K}, the channel gain boundaries can be found by
solving the following equations:

πk =

∫ Θk+1

Θk

ρ(θt )dθt =
1
K
, ∀k ∈ {1, 2, ...,K}, (1)

where ρ(θt ) is the probability density function of the variable
θt . Then for the channel state k, i.e., ht = k, the quantized
value of the channel gain is

H̄t =

∫ Θk+1
Θk

Ht ρ(θt )dθt∫ Θk+1
Θk

ρ(θt )dθt
=

∫ Θk+1
Θk

θtd−αρ(θt )dθt
πk

. (2)

Similarly, the available energy in the battery of the UE
is discretized into L + 1 states. Denote Bmax = LQ as the
maximum capacity of the battery, where Q represents an
energy quantum level. In the t-th block, the battery state is
at state l (i.e., bt = l), if b Bt

Q c = l, where Bt is the available
battery energy at the beginning of block t. As a special case,
the battery state is bmax = L when the battery is full.

B. Actions, Reward, and Cost Functions

At the beginning of each block, the H-AP makes a decision
according to the current system state. Since both WET and
WIT are performed in each block, the time duration of each
block T is divided into two orthogonal time slots: τE

t for WET
and τI

t for WIT with τE
t + τ

I
t ≤ T . Correspondingly, the action

adopted at the beginning of block t (denoted by at ) contains
four elements, i.e., at = {τE

t , τ
I
t , P

E
t , P

I
t }, where PE

t and PI
t are

the transmit power of the H-AP and the transmit power of the
UE, respectively.

When an action is performed in block t, the system receives
an immediate reward but also incurs an immediate cost.

1Although this is a reasonable and commonly adopted assumption (e.g.,
[24]–[27]) in a FSMC model, imposing this assumption is not necessary in
our work. For any other partition methods, the corresponding optimal and
suboptimal policies can be easily established by following a similar approach
as in this paper.

Specifically, in our work, the immediate reward and immediate
cost refer to the throughput per block (defined as the data
conveyed in one block) and the energy consumption per
block, respectively. Thus for a given state st and an action
at ∈ A(st ), where A(st ) is the feasible action set at state st ,
the immediate reward, i.e., r(st,at ) : S ×A → R, is given as

r(st,at ) =

∫ Θk+1
Θk

τI
tW log2

(
1 + PI

t θt d
−α

ζσ2

)
ρ(θt )dθt

πk
, (3)

where W is the bandwidth of the considered system, σ2 =
N0W is the thermal noise power (where N0 represents the
noise power spectral density), and ζ is a correction factor
characterizing the gap between the achievable rate and the
channel capacity due to the use of practical modulation and
coding schemes [8].

For a WPCN operating in an infinite horizon, the UE can
store part of or all the harvested energy in block t in the battery
for future use, or utilize the energy stored in the previous
blocks to transmit data (even there is no WET in the current
block). In this block, the immediate cost of the system, which
ties up with the energy cost and the energy accumulated at the
UE, is not always identical to the energy cost of the H-AP.
As a result, the immediate cost of the system at block t, i.e.,
e(st,at ) : S × A → R, is expressed as

e(st,at ) =
PE
t τ

E
t

ϑAP
+ PCAPτ

E
t + eIT

t − eAC
t , (4)

where the first two terms are the energy consumption at the H-
AP and the last two terms give the battery consumption (which
can be either positive or negative) at the UE. Specifically,
0 < ϑAP < 1 is the power amplifier efficiency of the H-AP.
Hence the first term in (4) stands for the energy consumption
of the power amplifier due to WET. PCAP is the circuit power
at the H-AP. Hence the second term in (4) stands for the
energy consumption of the circuit during WET. For the energy
consumption of the UE,

eIT
t =

PI
tτ

I
t

ϑU
+ PCUτ

I
t (5)

is the energy consumption of the UE during WIT, where 0 <
ϑU < 1 denotes the power amplifier efficiency of the UE and
PCU denotes the circuit power at the UE, respectively. Finally,

eAC
t = min(Bt + eEH

t , Bmax) − Bt (6)

is the energy accumulated at the UE during WET in block t.
Since the stored energy at the UE is limited by its maximum
battery capacity, the first part of (6) represents the battery level
after WET in block t, where

eEH
t = ηGAH̄tPE

t τ
E
t (7)

is the corresponding harvested energy during WET at the UE,
in which η is the energy conversion efficiency, and GA is the
antenna gain at the H-AP.

Apparently, the maximum value of eAC
t is eEH

t . By conser-
vation of energy, the energy harvested at the UE is always
no more than the energy cost at the H-AP, i.e., PE

t τ
E
t

ϑAP
+

PCAPτ
E
t ≥ eEH

t ≥ eAC
t . Therefore, both e(st,at ) and r(st,at )
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are non-negative. Denote PE
max as the maximum transmit

power of the H-AP. The maximum available energy of the
UE in slot t cannot exceed its current available energy, i.e.,
eIT
t ≤min(Bt + eEH

t , Bmax). The feasible action set at state st is:

A(st ) ={at |τ
E
t + τ

I
t≤T, τE

t ≥0, τI
t≥0,

0≤PE
t ≤PE

max, P
I
t≥0, eIT

t ≤min(Bt + eEH
t , Bmax)}.

(8)

C. Transition Probabilities

By denoting st and st+1 as the state in block t and t + 1,
respectively, the probability of transiting from state st to state
st+1 given an action at can be expressed as

P(st+1 |st,at )
(a)
= P(ht+1, bt+1 |ht, bt,at )
(b)
= P(ht+1 |ht )P(bt+1 |ht, bt,at ),

(9)

where (a) holds by definition and (b) holds since the channel
state evolution is independent of the battery state and the
action.

As stated in [21], the channel state transition probability
from state ht to ht+1 can be described by the level crossing
rate Λ(Θb), which is defined as the average number of times
that the instantaneous value of θt crosses a given level Θb.
Specifically, the transition probabilities can be approximated
by the ratio of Λ(Θb) divided by the average number of blocks
the value of θt falls in the interval associated with the state
ht = k. In our work, we assume that the channel state transits
between its adjacent state only. This assumption, which is
verified in [21], is commonly adopted in the related existing
works, e.g., [22]–[26], to simplify the model in capturing the
transition between channel states. Subsequently, the transition
probabilities can be approximated as

P(ht+1 = k + 1|ht = k) ≈
Λ(Θk+1)T

πk
, (10)

P(ht+1 = k − 1|ht = k) ≈
Λ(Θk−1)T

πk
, (11)

P(ht+1 = k |ht = k) ≈ 1 −
Λ(Θk+1)T

πk
−
Λ(Θk−1)T

πk
. (12)

On the other hand, the battery state transition probability
can be determined as follows. If bt+1 < bmax,

P(bt+1 |ht, bt,at ) = χ

{
bt +

⌊
eAC
t bmax

Bmax
−

eIT
t bmax

Bmax

⌋
= bt+1

}
,

(13)
otherwise,

P(bmax |ht, bt,at ) = χ

{
bt +

⌊
eAC
t bmax

Bmax
−

eIT
t bmax

Bmax

⌋
≥ bmax

}
,

(14)
where χ(·) is the indicator function.

III. CMDP FORMULATION AND THE OPTIMAL POLICY

The problem formulation and its corresponding optimal
solution is shown in this section.

A. Problem Formulation

Define the decision rule in block t as a function mapping
from the system state s to the action to be taken, i.e., µt : S →
A. A policy µ = {µ1, µ2, ...} is a sequence of decision rules.
If the decision rule in a policy does not depend on time, i.e.,
µ1 = µ2 = ..., then the policy is stationary. It is known that a
policy is a pure policy if it is stationary and deterministic. For
an admissible stationary policy µ, the long-term throughput is
defined as

R(s0,µ) = (1 − λ)
∞∑
t=1

λt−1Eµs0 {r(st,at )}, (15)

and the long-term energy cost is defined as

E(s0,µ) = (1 − λ)
∞∑
t=1

λt−1Eµs0 {e(st,at )}. (16)

The normalization factor (1 − λ) is introduced here to avoid
the situation where, for fixed immediate reward r and cost
d, the values of these two functions become very large if
λ is close to one. As shown in [28], when the discount
factor λ approaches 1, the infinite horizon discounted costs
defined in (15) and (16) converge to their corresponding
infinite horizon expected average costs, which are in the form
of limN→∞

1
N

∑N
t=1 E

µ
s0 {X(st,at )}, where N is the number of

blocks and X ∈ {r, e}. Accordingly, (15) and (16) can be
interpreted as the expected average throughput and expected
average energy cost per block, respectively.

Our purpose is to find an optimal policy µ∗ such that the
long-term throughput is maximized satisfying the maximum
allowed energy cost Eth. This can be formulated as a CMDP
problem as below:

max
µ

R(s0,µ) (17a)

s. t. E(s0,µ)≤Eth. (17b)

B. The Optimal Policy

As shown in [28], a CMDP problem can be transferred
into an equivalent unconstrained MDP problem using the La-
grangian approach. By introducing the Lagrangian multiplier
β with β > 0 for the CMDP problem in (17), a new reward
function r̃(s,a; β) : S × A × R+ → R, can be defined as

r̃(s,a; β) = r(s,a) − βe(s,a) (18)

and the corresponding Bellman’s optimality equation is:

Jβ(s) = max
a∈A(s)

{
(1 − λ)̃r(s,a; β) + λ

∑
s′∈S

P(s′ |s,a)Jβ(s′)

}
,

(19)

which can be solved via the Value Iteration Algorithm (VIA)
[29] for any fixed β. The corresponding optimal policy, i.e.,
µβ = {µβ(s), ∀s ∈ S}, can be computed by:

µβ(s)= arg
a∈A(s)

max

{
(1−λ)̃r(s,a; β)+λ

∑
s′∈S

P(s′ |s,a)Jβ(s′)

}
.

(20)
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As described in [28], the optimal policy of a CMDP
problem with a single constraint is a randomized mixture
of two pure policies (i.e., µβ− = {µβ− (s), ∀s ∈ S} and
µβ+ = {µβ+ (s), ∀s ∈ S}, with β− and β+ as their associated
multipliers, respectively). The policy µβ− satisfies the energy
constraint as much as possible from below, while the policy
µβ+ breaks the energy constraint but is as close to it as possible
from above. Since Jβ(s) is monotonically non-increasing in
β [30], the values of β− and β+ can be found through the
bisection search method. Define q ∈ [0, 1] as the mixing
weight parameter, Eβ− ≤ Eth, and Eβ+ ≥ Eth as the costs
of the policies µβ− and µβ+ , respectively. Then the optimal
policy, i.e., µ∗ = {µ∗(s), ∀s ∈ S}, is given by:

µ∗(s) =

{
µβ− (s), w.p. q (21)
µβ+ (s), w.p. 1 − q (22)

where q can be obtained through solving equation Eth =
qEβ− + (1 − q)Eβ+ .

C. Complexity Reduction

Although the method proposed in the last section can
achieve a globally optimal solution, for every step of VIA, it is
required to perform an exhaustive search over all feasible ac-
tions for every state. Hence, reducing the number of variables
in actions and narrowing down the value range of variables
are desirable so as to alleviate the computation burden.
Lemma 1. The H-AP always transmits with its maximum
available power in all the time blocks, i.e., PE

t = PE
max, ∀t =

1, 2, ....

Proof. We prove this by contradiction. Assume that the maxi-
mum throughput R̃∗ is obtained when an action ã∗t is adopted
in block t, where ã∗t = {τ̃

E
t , τ̃

I
t , P̃

E
t , P̃

I
t } with P̃E

t < PE
max. Let

a∗t = {τ
E∗
t , τI∗

t , P
E
max, P

I∗
t } be another feasible action in block

t with the same total energy consumption, i.e., e(st,a∗t ) =
e(st, ã∗t ), where τE∗

t PE
max = τ̃E

t P̃E
t . Denote the throughput

corresponding to a∗t by R∗. Since P̃E
t < PE

max, we always have
τE∗
t < τ̃E

t and PCAPτ
E∗
t < PCAP τ̃

E
t . Then according to (4), the

energy used in WIT stage by taking action a∗t must be higher
than that by taking action ã∗t , i.e., eIT

t (a
∗
t ) > eIT

t (ã
∗
t ). In other

words, we can always have R∗ > R̃∗, which contradicts the
assumption. Thus H-AP always transmits with its maximum
available power in all the time blocks. �

Lemma 2. The optimal time duration for energy transfer in
block t, denoted as τE∗

t , is limited by 0 ≤ τE∗
t ≤

Bmax−Bt

ηGAPE
maxH̄t

.

Proof. The proof is intuitive. Remind that the transmit power
of the H-AP is fixed at PE

max and the battery capacity at the UE
is limited by Bmax. Let τE′

t =
Bmax−Bt

ηGAPE
maxH̄t

. Any τE
t > τE′

t yields
the same available energy at the UE (i.e., Bmax), but incurs
higher system cost, which spends more energy budget but
makes no contribution to the system throughput performance.
Thus the optimal value of τE

t should be in the range of
0 ≤ τE∗

t ≤
Bmax−Bt

ηGAPE
maxH̄t

. �

Since the optimal policy of the CMDP problem (17)
consists of two pure policies, both of which are independent
of time sequence. Here, we drop the subscript ’t’ for

convenience. By exploiting Lemma 1 and Lemma 2, the action
a = {τE, τI, PE, PI} in the CMDP problem (17) is simplified
as a′ = {τE, τI, PI}. Subsequently, the feasible action set at
state s = [h, b] shrinks to A ′(s) = {{τE, τI, PI}|τE+τI≤T, 0 ≤
τE ≤

Bmax−bQ

ηGAPE
maxH̄(h)

, τI≥0, PE = PE
max, P

I≥0, eIT≤min(bQ +

eEH, Bmax)}, where H̄(h) is the expectation of Ht with channel
state h and is computed by (2). The corresponding algorithm
solving (17) is described in Algorithm 1. Specifically,
initializations are performed in lines 1-5, where n and
εβ are the iteration sequence and the error bound for
updating β, m and εJ are the iteration sequence and the
error bound for the operation of the VIA, respectively. In
lines 6-7, the VIA is conducted to solve the corresponding
unconstrained MDP problem, where Jm

β = (J
m
β (s), ∀s ∈ S),

Jm+1
β = (Jm+1

β (s), ∀s ∈ S), and the norm function is
defined as ‖Jβ ‖ = max |Jβ(s)| for s ∈ S. Then the
optimal policy of a given β is selected in line 8,
where µβ(s) = (τ

E(s; β), τI(s; β), PI(s; β)) represents the
corresponding optimal decision rule at system state s. That
is, for the given β, at state s, the H-AP performs WET for
duration of τE(s; β) with transmit power PE

max and the UE
transmits data for duration of τI(s; β) with transmit power
PI(s; β). For updating the value of β, the bisection search is
carried out in lines 9-16 and is stopped until the updating
tolerance satisfies that |βn+1 − βn | < εβ (see line 17). After
that, with the obtained policy µβ− (s) and µβ+ (s), the mixing
weight q is computed in line 21. Finally, the optimal reward
and the optimal policy are obtained in line 22.

Algorithm 1 The Optimal Policy for the CMDP (17)

1: Set n = 0, β− = 0, β+, β0 = β−, specify εβ > 0 and
εJ > 0.

2: repeat
3: Set β = βn.
4: Set n = n + 1 and m = 0.
5: Initialize J0

β(s) = 0 for each s ∈ S.
6: For each s ∈ S, compute Jm+1

β (s) by

Jm+1
β (s) := max

a∈A′(s)

{
(1−λ)̃r(s,a;β)+λ

∑
s′∈S

P(s′ |s,a)Jm
β (s

′)

}
.

(23)

7: If ‖Jm
β − J

m+1
β ‖ < εJ (1 − λ)/2λ, go to line 8.

Otherwise, set m = m + 1 and go to line 6.
8: For each s ∈ S, select the policy

µβ(s) := arg
a∈A′(s)

max

{
(1−λ)̃r(s,a;β)+λ

∑
s′∈S

P(s′ |s,a)Jm+1
β (s′)

}
.

(24)

9: Compute the stationary distribution Ψ(s) induced by
µβ(s) = {µβ(s), ∀s ∈ S}.

10: if
∑
s∈S Ψ(s)e(s, µβ(s)) > Eth then

11: βn+1 =
β++βn

2 .
12: β− = βn.
13: else
14: βn+1 =

β−+βn

2 .
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15: β+ = βn.
16: end if
17: until |βn+1 − βn | < εβ .
18: Select the policies µβ− (s) and µβ+ (s) based on (24) with

obtained β− and β+, respectively.
19: Compute the stationary distribution Ψβ− (s) and Ψβ+ (s)

induced by µβ− (s) and µβ+ (s), respectively.
20: Compute

Rβ− =
∑
s∈S

Ψβ− (s)r(s, µβ− (s)), (25)

Rβ+ =
∑
s∈S

Ψβ+ (s)r(s, µβ+ (s)), (26)

Eβ− =
∑
s∈S

Ψβ− (s)e(s, µβ− (s)), (27)

Eβ+ =
∑
s∈S

Ψβ+ (s)e(s, µβ+ (s)). (28)

21: Compute q by solving Eth = qEβ− + (1 − q)Eβ+ .
22: Obtian the optimal reward R = qRβ− + (1− q)Rβ+ and the

optimal policy for each s ∈ S

µ∗(s) =

{
µβ− (s), w.p. q (29)
µβ+ (s), w.p. 1 − q (30)

According to [31], the running time for solving a MDP
using VIA is O( 1

1−λ log( 1
1−λ )|A||S|

2). For the implementation
of VIA, the variables in actions are quantized. Specifically,
τE, τI, PE, PI are discretized into levels of VE

τ , V I
τ , VE

P
and V I

P , respectively, which indicates that there are at most
VE
τ V I

τVE
PV I

P candidate actions in a state before applying the
reduction on the action space. Through using Lemma 1 and
Lemma 2, the cardinality of the action space is reduced
from |A| = VE

τ V I
τVE

PV I
P |S| to |A ′ | = VE

τ V I
τV I

P |S|, thus
resulting in less computation time. Also, since the update
of β is independent from the action space and the channel
state space, the computational complexity of Algorithm 1 is
O( 1

1−λ log( 1
1−λ )V

E
τ V I

τV I
P |S|

3).

IV. THE SUB-OPTIMAL POLICY

Although the complexity of the optimal policy is reduced
through Lemma 1 and Lemma 2, it is still time consuming
when the number of system states is large. Thus it is natural
to design less complex policies even at the cost of some perfor-
mance degradation. In this section, we propose a sub-optimal
policy named the quasi-best-effort policy whose performance
is close to the optimal policy but with lower complexity. We
derive this sub-optimal policy by using the insights obtained
from the optimal offline policy, which will be discussed next.

Let us consider the long-term throughput maximization
problem from an offline point of view, in which the system
has a priori knowledge of the channel condition and battery
condition in each block. Let N →∞, E I

t = PI
tτ

I
t and γt =

Ht

ζσ2 ,
the offline optimization problem corresponding to problem
(17) can be written as

max
τI
t,τ

E
t ,E

I
t,∀t
(1 − λ)

N∑
t=1

λt−1τI
tW log2(1 +

E I
t

τI
t

γt ) (31a)

s. t.
(1−λ)

N∑
t=1

λt−1
[

E I
t

ϑU
+PCUτ

I
t +

PE
maxτ

E
t

ϑAP
+PCAPτ

E
t

−ηGAHtPE
maxτ

E
t

]
≤Eth,

(31b)
t∑

i=1
(

E I
i

ϑU
+ PCUτ

I
i )≤B0 +

t∑
i=1

ηGAHiPE
maxτ

E
i ,

∀t = 1, 2, ..., N,
(31c)

B0+

t∑
i=1
ηGAHiPE

maxτ
E
i −

t−1∑
i=1
(

E I
i

ϑU
+PCUτ

I
i ) ≤ Bmax,

∀t = 1, 2, ..., N,
(31d)

τI
t + τ

E
t ≤ T, ∀t = 1, 2, ..., N, (31e)

E I
t , τ

I
t , τ

E
t ≥ 0, ∀t = 1, 2, ..., N, (31f)

where (31b) is the energy budget constraint corresponding to
(17b). (31c)-(31e) describe the constraints on the available
energy at the UE, the battery capacity and the time duration,
respectively. Note that the result in Lemma 1 is used here, i.e.,
PE
t = PE

max, ∀t = 1, ..., N . In the case of infinite horizon (i.e.,
N → ∞), the total number of variables tends to be infinite
and it is intractable to obtain the optimal offline solution.
Nevertheless, it can provide us some useful insights on the
design of sub-optimal online policy.

Since (31a) is a concave function and all the constraints
(31b)-(31f) are affine, problem (31) is a typical convex opti-
mization problem. Its Lagrangian function can be written as

LQBE(τ
E, τ I,EI, δ,φ,υ,ψ)

= (1 − λ)
N∑
t=1

λt−1τI
tW log2(1 +

E I
t

τI
t

γt )

+ δ

{
Eth − (1 − λ)

N∑
t=1

λt−1
[

E I
t

ϑU
+ PCUτ

I
t +

PE
maxτ

E
t

ϑAP

+ PCAPτ
E
t −ηGAHtPE

maxτ
E
t

]}
+

N∑
t=1

φt (T − τI
t − τ

E
t )

+

N∑
t=1

υt

[
B0 +

t∑
i=1

ηGAHiPE
maxτ

E
i −

t∑
i=1

(
E I
i

ϑU
+ PCUτ

I
i

)]
+

N∑
t=1

ψt

{
Bmax−

[
B0+

t∑
i=1

ηGAHiPE
maxτ

E
i −

t−1∑
i=1

(
E I
i

ϑU
+PCUτ

I
i

)]}
,

(32)

where τE, τ I,EI are primal variable vectors consisting of τE
t ,

τI
t and E I

t , ∀t = 1, 2, ..., N , respectively. δ, φ, υ and ψ are non-
negative Lagrange multipliers, in which φ = [φ1, φ2, ..., φN ],
υ = [υ1, υ2, ..., υN ], and ψ = [ψ1, ψ2, ..., ψN ]. The comple-
mentary slackness condition considered in this paper is given
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by

υt

[
B0 +

t∑
i=1

ηGAHiPE
maxτ

E
i −

t∑
i=1

(
E I
i

ϑU
+ PCUτ

I
i

)]
= 0, ∀t .

(33)
The other complementary slackness conditions, which provide
no further useful information for the design of the sub-optimal
online policy, are omitted due to the limited space.

Lemma 3. For given δ, φ, υ and ψ, the optimal solution of
problem (31) could have following characteristics:

1) The optimal transmit power at the UE in block t is in
the structure of

PI∗
t =

E I
t

τI
t

=

[
WϑU
ln2

A−1
1 −

1
γt

]+
, (34)

where A1 = δ +
∑N

i=t
υi

(1−λ)λt−1 −
∑N

i=t+1
ψi

(1−λ)λt−1 .
2) If γt < γ∗t , τI

t = 0. Otherwise, if γt > γ∗t , B0 +∑t
i=1 ηGAHiPE

maxτ
E
i −

∑t
i=1

(
E I
i

ϑU
+ PCUτ

I
i

)
= 0. Here γ∗t is the

solution of

(1 − λ)λt−1W
log2(

WϑU
A′1ln2

γt ) −
1

ln2

WϑU
A′1ln2γt − 1

WϑU
A′1ln2γt


− φt − PCU

[
δ(1 − λ)λt−1 +

N∑
i=t+1

υi −

N∑
i=t+1

ψi

]
= 0,

(35)

where A′1 = δ +
∑N

i=t+1
υi

(1−λ)λt−1 −
∑N

i=t+1
ψi

(1−λ)λt−1 .

Proof. Please refer to Appendix A. �

Lemma 3 shows us two potential properties of the optimal
offline solution:

1) The optimal transmit power PI∗
t is increasing with γt .

This property intrigues a stair-case structure design in the sub-
optimal online policy, i.e., a higher channel gain comes with
a larger transmit power at the UE.

2) If γt exceeds a threshold γ∗t , then the energy stored in the
battery should be exhausted, i.e., B0 +

∑t
i=1 ηGAHiPE

maxτ
E
i −∑t

i=1

(
E I
i

ϑU
+ PCUτ

I
i

)
= 0. Otherwise, no energy is allocated at

the UE in block t (i.e., τI
t = 0⇒ E I

t = 0). As shown in (35),
the threshold γ∗t is closely related to the Lagrange multipliers
υi and φi , where i = t + 1, ..., N . It is intractable to obtain
the exact value of γ∗t when N goes to infinity. Nevertheless,
this property inspires us that the energy consumption of the
battery at the UE could be managed in an on-off structure.
Specifically, in a block, the UE either exhausts the battery, or
keeps silent and sends no data to the H-AP.

Remark 1. In problem (31), the time duration and the energy
cost for WIT as well as the time duration for WET (i.e.,
τI
t , E I

t , and τE
t , respectively) are optimally designed over

time sequence so that the system throughput in N blocks is
maximized. Different from works in [32] and [33] where the
energy arrivals are predetermined and known at the transmitter,
the energy arrival at the UE in block t is unknown and to
be determined by τE

t in problem (31). In other words, the
energy arrivals in problem (31) are variables to be designed
under the constraints of (31b)-(31f). As shown in Lemma 3,

TABLE I: The Complexity Performance Comparison

Policies Computational complexity Optimality
Optimal (with-
out complexity
reduction)

O( 1
1−λ log( 1

1−λ )V
E
τ V I

τ V
E
P V I

P |S |
3) Global Optimal

Optimal (with
complexity re-
duction)

O( 1
1−λ log( 1

1−λ )V
E
τ V I

τ V
I
P |S |

3) Global Optimal

Quasi-best-
effort

O( 1
1−λ log( 1

1−λ )V
E
τ V I

τ |S |
3) Sub-optimal

this controllability of the energy arrivals leads to a different
solution structure compared to those in [32] and [33]. Con-
sequently, the directional water-filling algorithm [32] and the
directional glue pouring algorithm [33], both of which require
the knowledge of the energy arrivals, are not applicable to our
case. Nevertheless, if Eth → ∞ and a sequence of τE

t , ∀t, is
already given, problem (31) with non-zero PCu turns out to be
in the same form with that in [33] and is equivalent to that in
[32] if zero PCu is considered.

Through exploiting the two properties from Lemma 3,
a sub-optimal quasi-best-effort policy2 is proposed and
described in Algorithm 2. To mimic the first property, we
design a stair-case structure for the UE’s transmit power PI,
where higher PI is allocated for the higher channel state. For
example, if PI

th is allocated at system state s = [h = k, b = l],
then PI ≥ PI

th should be allocated at the system state
s = [h > k, b = l], where k = 1, 2, ...,K and l = 0, 1, ..., L.
Particularly, PI

th is initialized as 0 for h = 1 and is updated
iteratively during the process of VIA (e.g., lines 7-14 in
Algorithm 2). Furthermore, we design an on-off structure
for the energy consumption at the UE to mimic the second
property. Specifically, for a given system state s = [h, b], the
actions at the UE, i.e., τI and PI, comply with one of the
following rules: 1) τI = 0 so that no energy is consumed at the
UE; 2) PIτI/ϑU+PCUτ

I−min(bQ+ηGAH̄(h)PE
maxτ

E, Bmax) = 0
so that the energy stored at the UE is exhausted.
Correspondingly, in Algorithm 2, the action space at
the system state s = [h, b] (denoted as A ′′(h, b)) can
be described as an intersection of three action sets, i.e.,
A ′′(h, b) = {{τE, τI, PI}|A ′(h, b) ∩ {PI ≥ PI

th} ∩ {P
IτI/ϑU +

PCUτ
I − min(bQ + ηGAH̄(h)PE

maxτ
E, Bmax) = 0} ∪ {τI = 0}}.

Obviously, compared to the optimal online policy, the
action space of the quasi-best-effort policy is smaller and
the maximum number of actions in a state shrinks to
VE
τ V I

τ . Correspondingly, the computational complexity of
the quasi-best-effort policy is O( 1

1−λ log( 1
1−λ )V

E
τ V I

τ |S|
3),

which is substantially lower compared to the optimal online
policy. The computational complexity of the optimal policy
and that of the quasi-best-effort policy are listed in the Table I.

Algorithm 2 The Quasi-best-effort Policy

1: Set n = 0, β− = 0, β+, β0 = β−.
2: Specify εβ > 0 and εJ > 0.

2It is worth noting that the proposed sub-optimal online policy is designed
for the case of single-UE. Extending the results to the case of multiple users
is beyond the scope of this paper and it is an interesting topic for future work.
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3: repeat
4: Set β = βn.
5: Set n = n + 1 and m = 0.
6: Initialize J0

β(h, b) = 0 for each h ∈ H and b ∈ B.
7: for each b ∈ B do
8: Set PI

th = 0 and h = 1.
9: while h ≤ |H | do

10: Compute

Jm+1
β (h, b) = max

a∈A′′(h,b)
{(1 − λ)̃r(h, b,a; β)

+λ
∑

h′∈H,b′∈B

P(h′, b′ |h, b,a)Jm
β (h

′, b′)

}
.

(36)

µβ(h, b) ={τE
β (h, b), τ

I
β(h, b), P

I
β(h, b)}

= arg
a∈A′′(h,b)

max {(1 − λ)̃r(h, b,a; β)

+λ
∑

h′∈H,b′∈B

P(h′, b′ |h, b,a)Jm+1
β (h′, b′)

}
.

(37)

11: Set PI
th = PI

β(h, b) and Set h = h + 1.
12: Update A ′′(h, b).
13: end while
14: end for
15: If ‖Jm

β − J
m+1
β ‖ < εJ (1−λ)

2λ , go to line 16. Otherwise,
set m = m + 1 and go to line 7.

16: For each h ∈ H and b ∈ B, select the policy with
determined β by

µβ(h, b) = arg
a∈A′′(h,b)

max {(1 − λ)̃r(h, b,a; β)

+λ
∑

h′∈H,b′∈B

P(h′, b′ |h, b,a)Jm+1
β (h′, b′)

}
.

(38)

17: Compute the stationary distribution Ψ(h, b) induced by
µβ(h, b) = {µβ(h, b), ∀h ∈ H, b ∈ B}.

18: if
∑

h∈H,b∈B Ψ(h, b)e(h, b, µβ(h, b)) > Eth then
19: βn+1 =

β++βn

2 .
20: β− = βn.
21: else
22: βn+1 =

β−+βn

2 .
23: β+ = βn.
24: end if
25: until |βn+1 − βn | < εβ .
26: Select the policies µβ− (h, b) and µβ+ (h, b) based on (38)

with obtained β− and β+, respectively.
27: Compute the stationary distribution Ψβ− (h, b) and
Ψβ+ (h, b) induced by µβ− (h, b) and µβ+ (h, b), respectively.

28: Compute

Rβ− =
∑

h∈H,b∈B

Ψβ− (h, b)r(h, b, µi,β− (h, b)), (39)

Rβ+ =
∑

h∈H,b∈B

Ψβ+ (h, b)r(h, b, µi,β+ (h, b)), (40)

Eβ− =
∑

h∈H,b∈B

Ψβ− (h, b)e(h, b, µi,β− (h, b)), (41)

Eβ+ =
∑

h∈H,b∈B

Ψβ+ (h, b)e(h, b, µi,β+ (h, b)). (42)

29: Compute q by solving Eth = qEβ− + (1 − q)Eβ+ .
30: Obtain the optimal reward R = qRβ− + (1− q)Rβ+ , and the

corresponding optimal policy for each h ∈ H and b ∈ B

µ∗(h, b) =
{

µβ− (h, b), w.p. q (43)
µβ+ (h, b), w.p. 1 − q (44)

V. SIMULATION RESULTS

In this section, numerical simulations are conducted to
evaluate the performance of the optimal online policy and our
proposed sub-optimal online policy. For the practicality of RF
energy transfer, we consider a Rician fading channel between
the H-AP and the UE in the simulations. Correspondingly, the
PDF of θt is

ρ(θt ) =
1

2%2 e
−(θt +ς

2)
2%2 I0

(√
θtς

%2

)
, (45)

where I0 is the modified Bessel function of the zero-th order,
2%2 and ς2 are the parameters representing the power of multi-
path and line-of-sight, respectively. Furthermore, the level
crossing rate Λ(Θb) is given as [23]

Λ(Θb) =

√
2π(1 + κ)Θb

θ̄
fDe−(κ+

1+κ
θ̄
Θb)I0

(√
κ(1 + κ)Θb

θ̄

)
,

(46)

where fD is the maximum Doppler shift3 of the channel, θ̄ =
2%2 + ς2 represents the local-mean fading power and κ = ς2

2%2 .
Besides, practical channel parameters setting in [23] is adopted
for simulation, where the number of channel states is selected
as K = 3, the maximum Doppler shift is set as fD = 1.34 Hz,
and the block duration is set as T = 16 ms, respectively.

The maximum transmit power of a practical UE is usually
around 23 dBm with a step size raging from 0.5 dB to 3 dB
[36]. In this case, the average step size is about 4.5 mW when a
0.5 dB step size is taken. Therefore, by jointly considering the
practicality and the accuracy of the results, we set the step size
of the transmit power at the UE as ∆PI = 1 mW. On the other
hand, extensive simulations (not shown here) have revealed
that the accuracy of results is guaranteed when εJ = 10−5,
εβ = 10−4, and ∆τI = ∆τE = 0.05T . Besides, similar to [17],
we focus on the case of small devices and express the battery
size as a function of the reference value Bref = 10−3 × T J.
Unless otherwise stated, the maximum battery capacity is set
as Bmax = 10Bref . The battery quantum is set as Q = Bref (the
effect of battery energy quantization will be discussed later).

3In practice, the RF signal from a transmitter experiences a multipath
fading and arrives at the receiver via direct and reflecting paths. Although
the locations of the H-AP and the UE are fixed, the obstacles reflecting the
RF signal in the environment could be moving, and thus produce the Doppler
shift in communication system, cf. [34] and [35].
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TABLE II: Parameters Setting

PE
max 10 W α 2.8 PCAP 500 mW

PCU 5 mW ϑAP 0.9 ϑU 0.9
η 0.95 λ 0.9 GA 8 dBi
ζ 1 W 2 kHz N0 -164 dBm/Hz
ς2 0.75 %2 0.125

Other important parameters used in this section are listed in
Table II.

In the following, the benchmark used in our simulations is
first introduced.

A. The Benchmark: The Myopic Policy

In our simulations, the myopic policy which focuses on
maximizing the throughput only in a single block is considered
as the benchmark. It makes decision at the beginning of every
block according to the observed channel state, the battery state
and the current available energy budget. The myopic policy in
block t is obtained through solving

max
τI
t,τ

E
t ,P

I
t

R̃ =

∫ Θk+1
Θk

τI
tW log2

(
1 + PI

t θt d
−α

ζσ2

)
ρ(θt )dθt

πk
(47a)

s. t. (1 − λ)
t∑

i=1
λt−1E th

t ≤ Eth, (47b)

PI
tτ

I
t

ϑU
+ PCUτ

I
t ≤ Bt + ηGAH̄tPE

maxτ
E
t , (47c)

Bt + ηGAH̄tPE
maxτ

E
t ≤ Bmax, (47d)

τE
t + τ

I
t ≤ T, (47e)

PI
t, τ

E
t , τ

I
t ≥ 0, (47f)

where E th
t =

PE
max
ϑAP

τE
t + PCAPτ

E
t +

PI
tτ

I
t

ϑU
+ PCUτ

I
t − ηGAH̄tPE

maxτ
E
t

is the energy cost in block t. In other words, starting with the
first block, the myopic policy is obtained through calculating
τI
t , τ

E
t and PI

t (t = 1, 2, ...) sequentially until the total system
energy consumption meets the system energy budget, i.e.,
(1 − λ)

∑t
i=1 λ

t−1E th
t = Eth. Let E I

t = PI
tτ

I
t , then the objective

function of problem (47) can be written as

R̃ =

∫ Θk+1
Θk

τI
tW log2

(
1 + E I

t θt d
−α

τI
t ζσ

2

)
ρ(θt )dθt

πk
. (48)

As shown in [8] and [33], for a given θt , r̃ =

τI
tW log2

(
1 + E I

t θt d
−α

τI
t ζσ

2

)
ρ(θt ) is a concave function of E I

t and

τI
t . Correspondingly, R̃, which can be treated as the summation

of multiple r̃ with different positive values of θt , is also a
concave function of E I

t and τI
t . Therefore, problem (47) is

a convex optimization problem and can be efficiently solved
through standard convex optimization methods. Due to the
randomization of the channel state transition, the Monte-Carlo
method is applied, where the results of the myopic policy are
obtained through averaging 200 realizations and are plotted
with 95% confidence intervals.
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Fig. 2: The comparison on the computation time of the optimal policy and
the quasi-best-effort policy.

B. The Performance of Computational Complexity

In Sec. III and Sec. IV, the computational complexity of the
optimal policy and the quasi-best-effort policy are theoretically
analyzed. In this subsection, we compare the computation
time of these two policies through numerical simulation. Here
we set |H | = 3 and consider various |B| from 4 to 11.
Correspondingly, the system state space size |S| = |H ||B|
is ranging from 12 to 33. The simulation is conducted on
the computer with 16 GB RAM and Inter Core i7-7770 CPU
working at 3.6 GHz. The result is recorded in Fig. 2. As shown
in the figure, the proposed quasi-best-effort policy greatly
outperforms the optimal policy in terms of the computation
complexity. Moreover, the larger the |S|, the more obvious
the advantage is.

C. The Performance of Long-term Throughput

In this subsection, we investigate the long-term throughput
performance of the three policies, i.e, the optimal policy, the
quasi-best-effort policy and the myopic policy. We use “Op-
timal”, “Quasi-best-effort” and “Myopic” to represent these
three policies in the simulation results, respectively.

The main differences between the optimal policy and the
quasi-best-effort policy are first investigated in Fig. 3. In
these simulations, the maximum energy budget is set as
Eth = 400Bref . The communication distance is set as d = 6
m. As stated in Sec. III, the optimal policy of the CMDP is a
randomized mixture of two pure policies µβ− and µβ+ . Thus
these results are obtained through making a expectation over
µβ− and µβ+ .

It can be observed in Fig. 3a and Fig. 3d that, the first
difference between the optimal policy and the quasi-best-
effort policy is the management of the energy stored in the
UE’s battery. In particular, for the quasi-best-effort policy,
the UE’s battery is exhausted in each system state in this
case. However, as shown in Fig. 3a, the optimal policy not
always uses up the battery’s energy at the UE. Remarkably,
the behavior of the optimal policy is quite different from that in
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Fig. 3: The differences between the optimal policy and the quasi-best-effort policy.

the traditional EH (e.g., harvesting energy from solar or wind
power) communication systems, where the energy is more
likely to be stored in the battery when the channel suffers
a deep fading and depleted when channel is of good quality.
For the optimal policy in a WPCN, there could be more energy
stored in the battery at a high channel state (i.e., h = 3 with
b = 1) rather than at a low channel state (i.e., h = 1 with
b = 1). This is because that the energy delivered from the H-
AP suffers dissipation during the WET. It is more reasonable
to transfer energy to the UE at a good channel state for a
WPCN.

Secondly, the transmit power allocated to the UE of these
two policies is illustrated in Fig. 3b and Fig. 3e, respectively.
For the quasi-best-effort policy which is structurally designed,
the transmit power of the UE is increasing with the channel
state. In contrast, the transmit power of the UE of the optimal
policy is not monotonic with the channel state (i.e., b = 1).

Lastly, we compare the time occupation in a block by these
two policies in Fig. 3c and Fig. 3f. As shown in these two
figures, due to the maximum allowed energy budget, the time
duration of each block is not always fully occupied, which is
in contrast to the result in [17] where the time in a block is
always totally used, i.e., τE + τI = T .

In order to investigate the long-term throughput perfor-
mance under different scenarios and show the validity of
our proposed policy, numerical simulations are conducted
below with various energy budget Eth, discount factor λ,
communication distance d, maximum battery capacity Bmax,
and energy conversion efficiency η, respectively.

The performances of the optimal policy, the quasi-best-
effort policy and the myopic policy under different maximum
allowed energy cost Eth are first examined in Fig. 4. In the
simulation, we set d = 10 m. As shown in the figure, the
performance gap between the quasi-best-effort policy and the
optimal policy is small. Compared to the myopic policy, the
long-term throughput is considerably improved by adopting
the proposed quasi-best-effort policy. Moreover, it is shown
to be increased with Eth, since a larger Eth means a higher
system energy budget. However, as Eth becomes larger, the
long-term throughput tends to be saturated. This is due to the
limitation of the battery size and the maximum transmit power
constraint of the H-AP.

Besides, we also consider different values of Q to illustrate
the impact of quantization of the battery states in Fig. 4. In
this simulation, we set Q = 5Bref, Bref , and Bref/2, respectively.
Correspondingly, for Bmax = 10Bref , the space size of the
battery states are |B| = 3, 11, and 21, respectively. As shown
in Fig. 4, the performance of the optimal policy is improved
when |B| varies from 3 to 11, but is almost invariant when |B|
increases from 11 to 21, which verifies the validity of using
Q = Bref . Therefore, to ensure the accuracy of the results, we
have set Q = Bref in all the simulations.

Fig. 5 depicts the long-term throughput performance of the
three policies under different value of λ. Here, we set Eth =
200Bref and d = 10 m. As shown in the figure, the quasi-best-
effort policy shows significant improvement over the myopic
policy and small performance degradation from the optimal
one. Besides, as described in Sec. II, the discount factor λ
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Fig. 4: The long-term throughput versus the maximum available energy budget
Eth.

represents the probability of the UE to survive the physical
operation failure. Although a larger λ yields a longer average
system operation time, the long-term throughput is shown to
be almost steady with the increase of λ in Fig. 5. This is quite
different from the result in [19], where the sum-throughput is
demonstrated to be increased with λ.
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Fig. 5: The long-term throughput versus the discount factor λ.

In Fig. 6, the long-term throughput R is depicted as a
function of the communication distances d with Eth = 500Bref .
As shown in the figure, R rapidly decreases when d becomes
larger. This is for the reason that a longer communication
distance results in a more severe signal attenuation due to path-
loss during WET and WIT. Similar to the previous results,
for different values of d, the quasi-best-effort policy offers
a substantial performance gain over the myopic policy and
approaches a close-to-optimal performance compared to the
optimal policy.

Considering different maximum battery capacity Bmax, the
long-term throughput performances of the three policies are
demonstrated in Fig. 7. In this simulation, we set Eth = 500Bref
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Fig. 6: The long-term throughput versus the communication distance d.

and d = 10 m. As shown in the figure, for the optimal policy
and the quasi-best-effort policy, a higher Bmax leads to a higher
system throughput. Since UE with larger battery capacity can
store more energy, it is more likely to fully exploit the channel
fluctuation opportunistically. As Bmax grows, the performance
of the system saturates because the energy budget of system
Eth is limited. However, the myopic policy shows a different
trend. With the growth of Bmax, the corresponding long-term
throughput first increases and then declines. This is because
that the myopic policy operates sequentially from block to
block and exhausts the battery’s energy as much as possible
to maximize the current system throughput. In this case, a
larger battery capacity Bmax brings a higher throughput but
leads to a higher energy consumption in each block, and thus
a shorter system operation time due to the energy budget
constraint. Therefore, there is a trade-off on Bmax for the
myopic policy. Nevertheless, compared to the myopic policy,
considerable improvement can be observed when the quasi-
best-effort policy is adopted.
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Fig. 7: The long-term throughput versus the maximum battery capacity Bmax.

Lastly, we investigate the relationship between the energy
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conversion efficiency η and the long-term throughput with
various circuit power settings. The result is plotted in Fig.
8. Here we set Eth = 500Bref and d = 8 m. As shown in
the figure, the long-term throughput grows with increasing
η. This is because that a higher energy conversion efficiency
comes with more available energy at the UE, thus yielding a
better throughput performance. On the other hand, the long-
term throughput is shown to be more sensitive to the circuit
power at the UE rather than that at the H-AP. For example,
with the optimal policy, the long-term throughput achieves a
performance gain of 1.2 dB at η = 0.75 when PCU decreases
3 dB (from 10 mW to 5 mW) and is almost unchanged when
PCAP drops from 0.5 W to 0.25 W. Nevertheless, for all these
three cases of circuit power settings, the proposed quasi-best-
effort policy significantly outperforms the myopic policy in
terms of the long-term throughput and shows a narrow gap to
the optimal policy.
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Fig. 8: The long-term throughput versus the energy conversion efficiency η
with different circuit power PCAP and PCU .

VI. CONCLUSION

In this paper, we studied the problem of designing online
policies in an energy-constrained WPCN to manage the trans-
mit power and time durations for both WET and WIT over
fading channels. Aiming at maximizing the system long-term
throughput with a limited total energy budget, we first modeled
the problem as a CMDP problem and solved it through using
the Lagrangian approach. After that, we investigated an offline
optimization problem, where the optimal data transmit power
was shown to be increasing with the channel gain, and the
UE always depletes its battery energy whenever it decides to
transmit data in a block. Through mimicking these properties,
we proposed a sub-optimal online policy named the quasi-
best-effort policy. The simulation results showed that the
computation time is considerably reduced when the quasi-
best-effort policy is adopted. At the same time, in terms of the
long-term throughput performance, the quasi-best-effort policy
reaches similar grades to the optimal online policy.

APPENDIX A
PROOF OF LEMMA 3
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which shows that LQBE is a linear function of τI
t . Thus we

have that
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∈ [0,T], for ∂LQBE
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Moreover, (52) can be written as a function of υt and γt , i.e.,
f (υt, γt ) =

∂LQBE
∂τI

t
.

Lemma 4. f (υt, γt ) is monotonically increasing in γt and
monotonically decreasing in υt under the condition that A2 =
WϑU

A1ln2 −
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Similarly, by taking the partial derivative of f (υt, γt ) with
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where ∂PI∗
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From Lemma 4, we know that, the maximum value of
f (υt, γt ) in terms of υt is achieved at υt = 0, i.e., f (0, γt ),
where
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Since the function log2(·) is defined for the positive real
numbers, f (0, γt ) is feasible only if WϑU

A′1ln2 > 0, which implies

that A′1 > 0. Thus we have that δ(1 − λ)λt−1 +
∑N

i=t+1 υi −∑N
i=t+1 ψi > 0. Then, when γt =
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< 0 and when

γt → +∞, f (0, γt ) → +∞. Since f (υt, γt ) is a monotonically
increasing function of γt , there must be a γ∗t such that
f (0, γ∗t ) = 0. Now we analyse the following two cases through
using the monotonically decreasing property of f (υt, γt ) with
respected to υt :

Case I: γt < γ∗t
In this case, it follows that f (υt, γt ) ≤ f (0, γt ) < f (0, γ∗t ) =

0. According to (54), we have that zero data transmission time
is allocated in this case, i.e., τI

t = 0.
Case II: γt > γ∗t
When γt > γ∗t , there always exists a υt > 0 such that

f (υt, γt ) = 0, since f (υt, γt ) is decreasing in υt . Then
according to (53), τI

t ∈ [0,T] in this case. However, there can
also be a υt > 0 such that f (υt, γt ) < 0. Then from (54), we
know that τI

t = 0 and it may leads to B0+
∑t

i=1 ηGAHiPE
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E I
i

ϑU
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slackness condition (33). Thus this is not the optimal solution.
Nevertheless, for γt > γ∗t , υt > 0 should always come with
that B0 +
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i=1 ηGAHiPE
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E
i −

∑t
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(
E I
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I
i

)
= 0, which

implies the depletion of the battery at the UE.
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