118 research outputs found

    Vision and Foraging in Cormorants: More like Herons than Hawks?

    Get PDF
    Background Great cormorants (Phalacrocorax carbo L.) show the highest known foraging yield for a marine predator and they are often perceived to be in conflict with human economic interests. They are generally regarded as visually-guided, pursuit-dive foragers, so it would be expected that cormorants have excellent vision much like aerial predators, such as hawks which detect and pursue prey from a distance. Indeed cormorant eyes appear to show some specific adaptations to the amphibious life style. They are reported to have a highly pliable lens and powerful intraocular muscles which are thought to accommodate for the loss of corneal refractive power that accompanies immersion and ensures a well focussed image on the retina. However, nothing is known of the visual performance of these birds and how this might influence their prey capture technique. Methodology/Principal Findings We measured the aquatic visual acuity of great cormorants under a range of viewing conditions (illuminance, target contrast, viewing distance) and found it to be unexpectedly poor. Cormorant visual acuity under a range of viewing conditions is in fact comparable to unaided humans under water, and very inferior to that of aerial predators. We present a prey detectability model based upon the known acuity of cormorants at different illuminances, target contrasts and viewing distances. This shows that cormorants are able to detect individual prey only at close range (less than 1 m). Conclusions/Significance We conclude that cormorants are not the aquatic equivalent of hawks. Their efficient hunting involves the use of specialised foraging techniques which employ brief short-distance pursuit and/or rapid neck extension to capture prey that is visually detected or flushed only at short range. This technique appears to be driven proximately by the cormorant's limited visual capacities, and is analogous to the foraging techniques employed by herons

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Ultraviolet polarisation sensitivity in the stomatopod crustacean Odontodactylus scyllarus

    Get PDF
    The ommatidia of crustacean eyes typically contain two classes of photoreceptors with orthogonally oriented microvilli. These receptors provide the basis for two-channel polarisation vision in the blue–green spectrum. The retinae of gonodactyloid stomatopod crustaceans possess a great variety of structural specialisations for elaborate polarisation vision. One type of specialisation is found in the small, distally placed R8 cells within the two most ventral rows of the mid-band. These ultraviolet-sensitive photoreceptors produce parallel microvilli, a feature suggestive for polarisation-sensitive photoreceptors. Here, we show by means of intracellular recordings combined with dye-injections that in the gonodactyloid species Odontodactylus scyllarus, the R8 cells of mid-band rows 5 and 6 are sensitive to linear polarised ultraviolet light. We show that mid-band row 5 R8 cells respond maximally to light with an e-vector oriented parallel to the mid-band, whereas mid-band row 6 R8 cells respond maximally to light with an e-vector oriented perpendicular to the mid-band. This orthogonal arrangement of ultraviolet-sensitive receptor cells could support ultraviolet polarisation vision. R8 cells of rows 5 and 6 are known to act as quarter-wave retarders around 500 nm and thus are the first photoreceptor type described with a potential dual role in polarisation vision

    Luminescence Dating in Fluvial Settings: Overcoming the Challenge of Partial Bleaching

    Get PDF
    Optically stimulated luminescence (OSL) dating is a versatile technique that utilises the two most ubiquitous minerals on Earth (quartz or K-feldspar) for constraining the timing of sediment deposition. It has provided accurate ages in agreement with independent age control in many fluvial settings, but is often characterised by partial bleaching of individual grains. Partial bleaching can occur where sunlight exposure is limited and so only a portion of the grains in the sample was exposed to sunlight prior to burial, especially in sediment-laden, turbulent or deep water columns. OSL analysis on multiple grains can provide accurate ages for partially bleached sediments where the OSL signal intensity is dominated by a single brighter grain, but will overestimate the age where the OSL signal intensity is equally as bright (often typical of K-feldspar) or as dim (sometimes typical of quartz). In such settings, it is important to identify partial bleaching and the minimum dose population, preferably by analysing single grains, and applying the appropriate statistical age model to the dose population obtained for each sample. To determine accurate OSL ages using these age models, it is important to quantify the amount of scatter (or overdispersion) in the well-bleached part of the partially bleached dose distribution, which can vary between sediment samples depending upon the bedrock sources and transport histories of grains. Here, we discuss how the effects of partial bleaching can be easily identified and overcome to determine accurate ages. This discussion will therefore focus entirely on the burial dose determination for OSL dating, rather than the dose-rate, as only the burial doses are impacted by the effects of partial bleaching

    Spectra of a shallow sea-unmixing for class identification and monitoring of coastal waters

    Get PDF
    Ocean colour-based monitoring of water masses is a promising alternative to monitoring concentrations in heterogeneous coastal seas. Fuzzy methods, such as spectral unmixing, are especially well suited for recognition of water masses from their remote sensing reflectances. However, such models have not yet been applied for water classification and monitoring. In this study, a fully constrained endmember model with simulated endmembers was developed for water class identification in the shallow Wadden Sea and adjacent German Bight. Its performance was examined on in situ measured reflectances and on MERIS satellite data. Water classification by means of unmixing reflectance spectra proved to be successful. When the endmember model was applied to MERIS data, it was able to visualise well-known spatial, tidal, seasonal, and wind-related variations in optical properties in the heterogeneous Wadden Sea. Analyses show that the method is insensitive to small changes in endmembers. Therefore, it can be applied in similar coastal areas. For use in open ocean situations or coastal or inland waters with other specific inherent optical properties, re-simulation of the endmember spectra with local optical properties is required. However, such an adaptation requires only a limited number of local in situ measurements

    Living on Cold Substrata: New Insights and Approaches in the Study of Microphytobenthos Ecophysiology and Ecology in Kongsfjorden

    Get PDF
    Organisms in shallow waters at high latitudes are under pressure due to climate change. These areas are typically inhabited by microphytobenthos (MPB) communities, composed mainly of diatoms. Only sparse information is available on the ecophysiology and acclimation processes within MPBs from Arctic regions. The physico-chemical environment and the ecology and ecophysiology of benthic diatoms in Kongsfjorden (Svalbard, Norway) are addressed in this review. MPB biofilms cover extensive areas of sediment. They show high rates of primary production, stabilise sediment surfaces against erosion under hydrodynamic forces,and affect the exchange of oxygen and nutrients across the sediment-water interface. Additionally, this phototrophic community represents a key component in the functioning of the Kongsfjorden trophic web, particularly as a major food source for benthic suspension- or deposit-feeders. MPB in Kongsfjorden is confronted with pronounced seasonal variations in solar radiation, low temperatures, and hyposaline (meltwater) conditions in summer, as well as long periods of ice and snow cover in winter. From the few data available, it seems that these organisms can easily cope with these environmental extremes. The underlying physiological mechanisms that allow growth and photosynthesis to continue under widely varying abiotic parameters, along with vertical migration and heterotrophy, and biochemical features such as a pronounced fatty-acid metabolism and silicate incorporation are discussed. Existing gaps in our knowledge of benthic diatoms in Kongsfjorden, such as the chemical ecology of biotic interactions, need to be filled. In addition, since many of the underlying molecular acclimation mechanisms are poorly understood, modern approaches based on transcriptomics, proteomics, and/or metabolomics, in conjunction with cell biological and biochemical techniques, are urgently needed. Climate change models for the Arctic predict other multifactorial stressors, such as an increase in precipitation and permafrost thawing, with consequences for the shallow-water regions. Both precipitation and permafrost thawing are likely to increase nutrient-enriched, turbid freshwater runoff and may locally counteract the expected increase in coastal radiation availability. So far, complex interactions among factors, as well as the full genetic diversity and physiological plasticity of Arctic benthic diatoms, have only rarely been considered. The limited existing information is described and discussed in this review

    Towards more efficient longline fisheries: fish feeding behaviour, bait characteristics and development of alternative baits

    Get PDF
    corecore