43,066 research outputs found

    Enhancing students’ confidence, competence and knowledge with Integrated Skills Challenge

    Get PDF
    Introduction/background: In today's complex healthcare environment, new nursing graduates are expected to master nursing skills in a timely manner and become critical thinkers with the capacity of solving complex healthcare problems efficiently. The increased complexity of the clinical setting requires competence-building begin in introductory courses, establishing foundational skills for critical thinking and prioritisation. In the healthcare professions, teaching and learning methods are focused on integration of clinical knowledge and skills. However, traditional teaching and learning methodologies do not always facilitate the development of a requisite level of these clinical skills. For the Master of Nursing Studies (MNSt) students whose program is shortened this means the acquisition of these skills must be achieved more rapidly. Aim/objectives: The purpose of this study is to investigate the feasibility of developing simulation scenarios (Integrated Skill Challenge [ISC]) as a supplemental teaching-learning strategy to enhance the transfer of student self-confidence and competence to the clinical nursing environment. Methods To examine potential effects of ISC on the MNSt students, a pilot study was conducted including 52 participants. Data were collected weekly over 11 week period by using pre and post-test design. Results: Analysis showed a significant increase in the confidence, competence and knowledge. Confidence, competence and knowledge scores increased when students were pre-loaded with knowledge prior to performing in the ISC. Results generally indicated that the ISC had the anticipated effects. Conclusions: This study reveals a high feasibility of developing simulation scenarios as an active learning methodology and that it should be developed further and piloted on a larger sample

    Investigation of the utilisation of social networks in e-learning at universities

    Get PDF
    Over the years universities have considered to use social networks for learning purposes as most of their students now engage on them. However, questions on the impact social networks would have on learning and how they can be utilised further for more effective teaching and learning are still unclear. To solve these questions, an in-depth investigation has been conducted to understand the benefits and drawback of social network features available for students. The investigation results show that students strongly believe that social network features will help enhance learning and the key ways of utilising such features have been suggested

    Iterative Detection of Diagonal Block Space Time Trellis Codes, TCM and Reversible Variable Length Codes for Transmission over Rayleigh Fading Channels

    No full text
    Iterative detection of Diagonal Block Space Time Trellis Codes (DBSTTCs), Trellis Coded Modulation (TCM) and Reversible Variable Length Codes (RVLCs) is proposed. With the aid of efficient iterative decoding, the proposed scheme is capable of providing full transmit diversity and a near channel capacity performance. The performance of the proposed scheme was evaluated when communicating over uncorrelated Rayleigh fading channels. Explicitly, significant iteration gains were achieved by the proposed scheme, which was capable of performing within 2~dB from the channel capacity

    Gravitational Theory with a Dynamical Time

    Full text link
    A gravitational theory involving a vector field χμ\chi^{\mu}, whose zero component has the properties of a dynamical time, is studied. The variation of the action with respect to χμ\chi^{\mu} gives the covariant conservation of an energy momentum tensor T(χ)μν T^{\mu \nu}_{(\chi)}. Studying the theory in a background which has killing vectors and killing tensors we find appropriate shift symmetries of the field χμ\chi^{\mu} which lead to conservation laws. The energy momentum that is the source of gravity T(G)μν T^{\mu \nu}_{(G)} is different but related to T(χ)μν T^{\mu \nu}_{(\chi)} and the covariant conservation of T(G)μν T^{\mu \nu}_{(G)} determines in general the vector field χμ\chi^{\mu}. When T(χ)μν T^{\mu \nu}_{(\chi)} is chosen to be proportional to the metric, the theory coincides with the Two Measures Theory, which has been studied before in relation to the Cosmological Constant Problem. When the matter model consists of point particles, or strings, the form of T(G)μν T^{\mu \nu}_{(G)}, solutions for χμ\chi^{\mu} are found. For the case of a string gas cosmology, we find that the Milne Universe can be a solution, where the gas of strings does not curve the spacetime since although T(χ)μν0 T^{\mu \nu}_{(\chi)} \neq 0, T(G)μν=0 T^{\mu \nu}_{(G)}= 0, as a model for the early universe, this solution is also free of the horizon problem. There may be also an application to the "time problem" of quantum cosmology.Comment: 21 pages, discussions extended, some more explicit proofs included, more references include

    Time-Varying Volatility and the Dynamic Behavior of the Term Structure

    Get PDF
    In this paper, we consider a framework with which the cross sectional and time series behavior of the yield curve can be studied simultaneously. We examine the relationship between the yield curve and the time-varying conditional volatility of the Treasury bill market. We demonstrate that differently shaped yield curves can result given different combinations of volatility and expectations about future spot rates. Moreover, adjusting the forward rate for the volatility related liquidity premium can improve its performance as a predictor of future spot rates at least for the period from August 1964 to August 1979.

    Steady state and dynamic properties of journal bearings in laminar and superlaminar flow regimes. II - Full floating ring bearings

    Get PDF
    Steady state and dynamic properties of journal bearings in laminar and superlaminar flow regime

    Measuring and Testing the Impact of News on Volatility

    Get PDF
    This paper introduces the News Impact Curve to measure how new information is incorporated into volatility estimates. A variety of new and existing ARCH models are compared and estimated with daily Japanese stock return data to determine the shape of the News Impact Curve. New diagnostic tests are presented which emphasize the asymmetry of the volatility response to news. A partially non-parametric ARCH model is introduced to allow the data to estimate this shape. A comparison of this model with the existing models suggests that the best models are one by Glosten Jaganathan and Runkle (GJR) and Nelson's EGARCE. Similar results hold on a pre-crash sample period but are less strong.
    corecore