87 research outputs found

    Paneth cell - rich regions separated by a cluster of Lgr5+ cells initiate crypt fission in the intestinal stem cell niche

    Get PDF
    The crypts of the intestinal epithelium house the stem cells that ensure the continual renewal of the epithelial cells that line the intestinal tract. Crypt number increases by a process called crypt fission, the division of a single crypt into two daughter crypts. Fission drives normal tissue growth and maintenance. Correspondingly, it becomes less frequent in adulthood. Importantly, fission is reactivated to drive adenoma growth. The mechanisms governing fission are poorly understood. However, only by knowing how normal fission operates can cancer-associated changes be elucidated. We studied normal fission in tissue in three dimensions using high-resolution imaging and used intestinal organoids to identify underlying mechanisms. We discovered that both the number and relative position of Paneth cells and Lgr5+ cells are important for fission. Furthermore, the higher stiffness and increased adhesion of Paneth cells are involved in determining the site of fission. Formation of a cluster of Lgr5+ cells between at least two Paneth-cell-rich domains establishes the site for the upward invagination that initiates fission

    Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors

    Get PDF
    Intestinal cells are constantly produced from a stem cell reservoir that gives rise to proliferating transient amplifying cells, which subsequently differentiate into one of the four principal cell types. Signalling pathways, including the Notch signalling pathway, coordinate these differentiation processes and their deregulation may cause cancer. Pharmacological inhibition through γ-secretase inhibitors or genetic inactivation of the Notch signalling pathway results in the complete loss of proliferating crypt progenitors due to their conversion into post-mitotic goblet cells. The basic helix–loop–helix transcription factor Math1 is essential for intestinal secretory cell differentiation. Because of the critical roles of both Math1 and Notch signalling in intestinal homeostasis and neoplastic transformation, we sought to determine the genetic hierarchy regulating the differentiation of intestinal stem cells into secretory cells. In this paper, we demonstrate that the conversion of intestinal stem cells into goblet cells upon inhibition of the Notch signalling pathway requires Math1

    Paneth Cells in Intestinal Homeostasis and Tissue Injury

    Get PDF
    Adult stem cell niches are often co-inhabited by cycling and quiescent stem cells. In the intestine, lineage tracing has identified Lgr5+ cells as frequently cycling stem cells, whereas Bmi1+, mTert+, Hopx+ and Lrig1+ cells appear to be more quiescent. Here, we have applied a non-mutagenic and cell cycle independent approach to isolate and characterize small intestinal label-retaining cells (LRCs) persisting in the lower third of the crypt of Lieberkühn for up to 100 days. LRCs do not express markers of proliferation and of enterocyte, goblet or enteroendocrine differentiation, but are positive for Paneth cell markers. While during homeostasis, LR/Paneth cells appear to play a supportive role for Lgr5+ stem cells as previously shown, upon tissue injury they switch to a proliferating state and in the process activate Bmi1 expression while silencing Paneth-specific genes. Hence, they are likely to contribute to the regenerative process following tissue insults such as chronic inflammation

    Delta1 Expression, Cell Cycle Exit, and Commitment to a Specific Secretory Fate Coincide within a Few Hours in the Mouse Intestinal Stem Cell System

    Get PDF
    The stem cells of the small intestine are multipotent: they give rise, via transit-amplifying cell divisions, to large numbers of columnar absorptive cells mixed with much smaller numbers of three different classes of secretory cells - mucus-secreting goblet cells, hormone-secreting enteroendocrine cells, and bactericide-secreting Paneth cells. Notch signaling is known to control commitment to a secretory fate, but why are the secretory cells such a small fraction of the population, and how does the diversity of secretory cell types arise? Using the mouse as our model organism, we find that secretory cells, and only secretory cells, pass through a phase of strong expression of the Notch ligand Delta1 (Dll1). Onset of this Dll1 expression coincides with a block to further cell division and is followed in much less than a cell cycle time by expression of Neurog3 – a marker of enteroendocrine fate – or Gfi1 – a marker of goblet or Paneth cell fate. By conditional knock-out of Dll1, we confirm that Delta-Notch signaling controls secretory commitment through lateral inhibition. We infer that cells stop dividing as they become committed to a secretory fate, while their neighbors continue dividing, explaining the final excess of absorptive over secretory cells. Our data rule out schemes in which cells first become committed to be secretory, and then diversify through subsequent cell divisions. A simple mathematical model shows how, instead, Notch signaling may simultaneously govern the commitment to be secretory and the choice between alternative modes of secretory differentiation

    Indirect exclusion of four candidate genes for generalized progressive retinal atrophy in several breeds of dogs

    Get PDF
    BACKGROUND: Generalized progressive retinal atrophy (gPRA) is a hereditary ocular disorder with progressive photoreceptor degeneration in dogs. Four retina-specific genes, ATP binding cassette transporter retina (ABCA4), connexin 36 (CX36), c-mer tyrosin kinase receptor (MERTK) and photoreceptor cell retinol dehydrogenase (RDH12) were investigated in order to identify mutations leading to autosomal recessive (ar) gPRA in 29 breeds of dogs. RESULTS: Mutation screening was performed initially by PCR and single strand conformation polymorphism (SSCP) analysis, representing a simple method with comparatively high reliability for identification of sequence variations in many samples. Conspicuous banding patterns were analyzed via sequence analyses in order to detect the underlying nucleotide variations. No pathogenetically relevant mutations were detected in the genes ABCA4, CX36, MERTK and RDH12 in 71 affected dogs of 29 breeds. Yet 30 new sequence variations were identified, both, in the coding regions and intronic sequences. Many of the sequence variations were in heterozygous state in affected dogs. CONCLUSION: Based on the ar transmittance of gPRA in the breeds investigated, informative sequence variations provide evidence allowing indirect exclusion of pathogenetic mutations in the genes ABCA4 (for 9 breeds), CX36 (for 12 breeds), MERTK (for all 29 breeds) and RDH12 (for 9 breeds)

    Zebrafish Krüppel-Like Factor 4a Represses Intestinal Cell Proliferation and Promotes Differentiation of Intestinal Cell Lineages

    Get PDF
    BACKGROUND:Mouse krüppel-like factor 4 (Klf4) is a zinc finger-containing transcription factor required for terminal differentiation of goblet cells in the colon. However, studies using either Klf4(-/-) mice or mice with conditionally deleted Klf4 in their gastric epithelia showed different results in the role of Klf4 in epithelial cell proliferation. We used zebrafish as a model organism to gain further understanding of the role of Klf4 in the intestinal cell proliferation and differentiation. METHODOLOGY/PRINCIPAL FINDINGS:We characterized the function of klf4a, a mammalian klf4 homologue by antisense morpholino oligomer knockdown. Zebrafish Klf4a shared high amino acid similarities with human and mouse Klf4. Phylogenetic analysis grouped zebrafish Klf4a together with both human and mouse Klf4 in a branch with high bootstrap value. In zebrafish, we demonstrate that Klf4a represses intestinal cell proliferation based on results of BrdU incorporation, p-Histone 3 immunostaining, and transmission electron microscopy analyses. Decreased PepT1 expression was detected in intestinal bulbs of 80- and 102-hours post fertilization (hpf) klf4a morphants. Significant reduction of alcian blue-stained goblet cell number was identified in intestines of 102- and 120-hpf klf4a morphants. Embryos treated with γ-secretase inhibitor showed increased klf4a expression in the intestine, while decreased klf4a expression and reduction in goblet cell number were observed in embryos injected with Notch intracellular domain (NICD) mRNA. We were able to detect recovery of goblet cell number in 102-hpf embryos that had been co-injected with both klf4a and Notch 1a NICD mRNA. CONCLUSIONS/SIGNIFICANCE:This study provides in vivo evidence showing that zebrafih Klf4a is essential for the repression of intestinal cell proliferation. Zebrafish Klf4a is required for the differentiation of goblet cells and the terminal differentiation of enterocytes. Moreover, the regulation of differentiation of goblet cells in zebrafish intestine by Notch signaling at least partially mediated through Klf4a

    A Key Role for E-cadherin in Intestinal Homeostasis and Paneth Cell Maturation

    Get PDF
    E-cadherin is a major component of adherens junctions. Impaired expression of E-cadherin in the small intestine and colon has been linked to a disturbed intestinal homeostasis and barrier function. Down-regulation of E-cadherin is associated with the pathogenesis of infections with enteropathogenic bacteria and Crohn's disease. To genetically clarify the function of E-cadherin in intestinal homeostasis and maintenance of the epithelial defense line, the Cdh1 gene was conditionally inactivated in the mouse intestinal epithelium. Inactivation of the Cdh1 gene in the small intestine and colon resulted in bloody diarrhea associated with enhanced apoptosis and cell shedding, causing life-threatening disease within 6 days. Loss of E-cadherin led cells migrate faster along the crypt-villus axis and perturbed cellular differentiation. Maturation and positioning of goblet cells and Paneth cells, the main cell lineage of the intestinal innate immune system, was severely disturbed. The expression of anti-bacterial cryptidins was reduced and mice showed a deficiency in clearing enteropathogenic bacteria from the intestinal lumen. These results highlight the central function of E-cadherin in the maintenance of two components of the intestinal epithelial defense: E-cadherin is required for the proper function of the intestinal epithelial lining by providing mechanical integrity and is a prerequisite for the proper maturation of Paneth and goblet cells

    Neurod1 Suppresses Hair Cell Differentiation in Ear Ganglia and Regulates Hair Cell Subtype Development in the Cochlea

    Get PDF
    Background: At least five bHLH genes regulate cell fate determination and differentiation of sensory neurons, hair cells and supporting cells in the mammalian inner ear. Cross-regulation of Atoh1 and Neurog1 results in hair cell changes in Neurog1 null mice although the nature and mechanism of the cross-regulation has not yet been determined. Neurod1, regulated by both Neurog1 and Atoh1, could be the mediator of this cross-regulation. Methodology/Principal Findings: We used Tg(Pax2-Cre) to conditionally delete Neurod1 in the inner ear. Our data demonstrate for the first time that the absence of Neurod1 results in formation of hair cells within the inner ear sensory ganglia. Three cell types, neural crest derived Schwann cells and mesenchyme derived fibroblasts (neither expresses Neurod1) and inner ear derived neurons (which express Neurod1) constitute inner ear ganglia. The most parsimonious explanation is that Neurod1 suppresses the alternative fate of sensory neurons to develop as hair cells. In the absence of Neurod1, Atoh1 is expressed and differentiates cells within the ganglion into hair cells. We followed up on this effect in ganglia by demonstrating that Neurod1 also regulates differentiation of subtypes of hair cells in the organ of Corti. We show that in Neurod1 conditional null mice there is a premature expression of several genes in the apex of the developing cochlea and outer hair cells are transformed into inner hair cells. Conclusions/Significance: Our data suggest that the long noted cross-regulation of Atoh1 expression by Neurog1 migh

    Expression of Neurog1 Instead of Atoh1 Can Partially Rescue Organ of Corti Cell Survival

    Get PDF
    In the mammalian inner ear neurosensory cell fate depends on three closely related transcription factors, Atoh1 for hair cells and Neurog1 and Neurod1 for neurons. We have previously shown that neuronal cell fate can be altered towards hair cell fate by eliminating Neurod1 mediated repression of Atoh1 expression in neurons. To test whether a similar plasticity is present in hair cell fate commitment, we have generated a knockin (KI) mouse line (Atoh1KINeurog1) in which Atoh1 is replaced by Neurog1. Expression of Neurog1 under Atoh1 promoter control alters the cellular gene expression pattern, differentiation and survival of hair cell precursors in both heterozygous (Atoh1+/KINeurog1) and homozygous (Atoh1KINeurog1/KINeurog1) KI mice. Homozygous KI mice develop patches of organ of Corti precursor cells that express Neurog1, Neurod1, several prosensory genes and neurotrophins. In addition, these patches of cells receive afferent and efferent processes. Some cells among these patches form multiple microvilli but no stereocilia. Importantly, Neurog1 expressing mutants differ from Atoh1 null mutants, as they have intermittent formation of organ of Corti-like patches, opposed to a complete ‘flat epithelium’ in the absence of Atoh1. In heterozygous KI mice co-expression of Atoh1 and Neurog1 results in change in fate and patterning of some hair cells and supporting cells in addition to the abnormal hair cell polarity in the later stages of development. This differs from haploinsufficiency of Atoh1 (Pax2cre; Atoh1f/+), indicating the effect of Neurog1 expression in developing hair cells. Our data suggest that Atoh1KINeurog1 can provide some degree of functional support for survival of organ of Corti cells. In contrast to the previously demonstrated fate plasticity of neurons to differentiate as hair cells, hair cell precursors can be maintained for a limited time by Neurog1 but do not transdifferentiate as neurons
    corecore