1,681 research outputs found

    Clustering of antibiotic resistance of E. coli in couples: suggestion for a major role of conjugal transmission

    Get PDF
    BACKGROUND: Spread of antibiotic resistance in hospitals is a well-known problem, but studies investigating the importance of factors potentially related to the spread of resistant bacteria in outpatients are sparse. METHODS: Stool samples were obtained from 206 healthy couples in a community setting in Southern Germany in 2002–2003. E. coli was cultured and minimal inhibition concentrations were tested. Prevalences of E. coli resistance to commonly prescribed antibiotics according to potential risk factors were ascertained. RESULTS: Prevalences of ampicillin resistance were 15.7% and 19.4% for women and men, respectively. About ten percent and 15% of all isolates were resistant to cotrimoxazole and doxycycline, respectively. A partner carrying resistance was the main risk factor for being colonized with resistant E. coli. Odds ratios (95% CI) for ampicillin and cotrimoxazole resistance given carriage of resistant isolates by the partner were 6.9 (3.1–15.5) and 3.3 (1.5–18.0), respectively. CONCLUSION: Our data suggest that conjugal transmission may be more important for the spread of antibiotic resistance in the community setting than commonly suspected risk factors such as previous antibiotic intake or hospital contacts

    A preliminary study of genetic factors that influence susceptibility to bovine tuberculosis in the British cattle herd

    Get PDF
    Associations between specific host genes and susceptibility to Mycobacterial infections such as tuberculosis have been reported in several species. Bovine tuberculosis (bTB) impacts greatly the UK cattle industry, yet genetic predispositions have yet to be identified. We therefore used a candidate gene approach to study 384 cattle of which 160 had reacted positively to an antigenic skin test (‘reactors’). Our approach was unusual in that it used microsatellite markers, embraced high breed diversity and focused particularly on detecting genes showing heterozygote advantage, a mode of action often overlooked in SNP-based studies. A panel of neutral markers was used to control for population substructure and using a general linear model-based approach we were also able to control for age. We found that substructure was surprisingly weak and identified two genomic regions that were strongly associated with reactor status, identified by markers INRA111 and BMS2753. In general the strength of association detected tended to vary depending on whether age was included in the model. At INRA111 a single genotype appears strongly protective with an overall odds ratio of 2.2, the effect being consistent across nine diverse breeds. Our results suggest that breeding strategies could be devised that would appreciably increase genetic resistance of cattle to bTB (strictly, reduce the frequency of incidence of reactors) with implications for the current debate concerning badger-culling

    The burden of co-existing dermatological disorders and their tendency of being overlooked among patients admitted to muhimbili national hospital in Dar es Salaam, Tanzania

    Get PDF
    \ud Skin diseases are underestimated and overlooked by most clinicians despite being common in clinical practice. Many patients are hospitalized with co-existing dermatological conditions which may not be detected and managed by the attending physicians. The objective of this study was to determine the burden of co-existing and overlooked dermatological disorders among patients admitted to medical wards of Muhimbili National hospital in Dar es Salaam. A hospital-based descriptive cross-sectional study conducted at Muhimbili National hospital in Dar es Salaam, Tanzania. Patients were consecutively recruited from the medical wards. Detailed interview to obtain clinico-demographic characteristics was followed by a complete physical examination. Dermatological diagnoses were made mainly clinically. Appropriate confirmatory laboratory investigations were performed where necessary. Data was analyzed using the 'Statistical Package for Social Sciences' (SPSS) program version 10.0. A p-value of < 0.5 was statistically significant. Three hundred and ninety patients admitted to medical wards were enrolled into the study of whom, 221(56.7%) were females. The mean age was 36.7 ± 17.9 (range 7-84 years). Overall, 232/390 patients (59.5%) had co-existing dermatological disorders with 49% (191/390) having one, 9% (36/390) two and 5 patients (1%) three. A wide range of co-existing skin diseases was encountered, the most diverse being non-infectious conditions which together accounted for 36.4% (142/390) while infectious dermatoses accounted for 31.5% (123/390). The leading infectious skin diseases were superficial fungal infections accounting for 18%. Pruritic papular eruption of HIV/AIDS (PPE) and seborrheic eczema were the most common non-infectious conditions, each accounting for 4.3%. Of the 232/390 patients with dermatological disorders, 191/232 (82.3%) and 154/232 (66.3%) had been overlooked by their referring and admitting doctors respectively. Dermatological disorders are common among patients admitted to medical wards and many are not detected by their referring or admitting physicians. Basic dermatological education should be emphasized to improve knowledge and awareness among clinicians.\u

    N-player quantum games in an EPR setting

    Get PDF
    The NN-player quantum game is analyzed in the context of an Einstein-Podolsky-Rosen (EPR) experiment. In this setting, a player's strategies are not unitary transformations as in alternate quantum game-theoretic frameworks, but a classical choice between two directions along which spin or polarization measurements are made. The players' strategies thus remain identical to their strategies in the mixed-strategy version of the classical game. In the EPR setting the quantum game reduces itself to the corresponding classical game when the shared quantum state reaches zero entanglement. We find the relations for the probability distribution for NN-qubit GHZ and W-type states, subject to general measurement directions, from which the expressions for the mixed Nash equilibrium and the payoffs are determined. Players' payoffs are then defined with linear functions so that common two-player games can be easily extended to the NN-player case and permit analytic expressions for the Nash equilibrium. As a specific example, we solve the Prisoners' Dilemma game for general N2 N \ge 2 . We find a new property for the game that for an even number of players the payoffs at the Nash equilibrium are equal, whereas for an odd number of players the cooperating players receive higher payoffs.Comment: 26 pages, 2 figure

    RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus

    Get PDF
    Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions

    Wind-driven ventilation improvement with plan typology alteration: a CFD case study of traditional Turkish architecture

    Get PDF
    Aligned with achieving the goal of net-zero buildings, the implementation of energy-saving techniques in minimizing energy demands is proving more vital than at any time. As practical and economic options, passive strategies in ventilation developed over thousands of years have shown great potential for the reduction of residential energy demands, which are often underestimated in modern building’s construction. In particular, as a cost-effective passive strategy, wind-driven ventilation via windows has huge potential in the enhancement of the indoor air quality (IAQ) of buildings while simultaneously reducing their cooling load. This study aims to investigate the functionality and applicability of a common historical Turkish architectural element called “Cumba” to improve the wind-driven ventilation in modern buildings. A case study building with an archetypal plan and parameters was defined as a result of a survey over 111 existing traditional samples across Turkey. Buildings with and without Cumba were compared in different scenarios by the development of a validated CFD microclimate model. The results of simulations clearly demonstrate that Cumba can enhance the room’s ventilation rate by more than two times while harvesting wind from different directions. It was also found that a flexible window opening strategy can help to increase the mean ventilation rate by 276%. Moreover, the room’s mean air velocity and ventilation rate could be adjusted to a broad range of values with the existence of Cumba. Thus, this study presents important findings about the importance of plan typology in the effectiveness of wind-driven ventilation strategies in modern dwellings

    Characteristics of patients with venous thromboembolism and atrial fibrillation in Venezuela

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies describing venous thromboembolic event (VTEE) and atrial fibrillation (AF) in South American populations are limited. The aim of this cross-sectional study was to describe the characteristics of Venezuelan patients admitted and treated for these conditions.</p> <p>Methods</p> <p>A retrospective medical record review of 1397 consecutive patients admitted to three private hospitals or clinics between January 2000 and December 2005 was performed. Data was collected on demographics, anthropometrics, hospital visit, comorbidities and treatment.</p> <p>Results</p> <p>Among 401 VTEE and 996 AF patients, men were more likely to have AF (58%) while more women experienced a VTEE (58%). Most patients were admitted via the emergency room (87%) and had only one event during the study period (83%). Common comorbidities included hypertension (46%), heart failure (17%), diabetes (12%) and congestive heart failure (11%). Characteristics of Venezuelan patients with VTEE and AF are similar to that reported in the literature for other populations.</p> <p>Conclusions</p> <p>These results provide background characteristics for future studies assessing risk factors for AF and VTEE in South American populations.</p

    Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions

    Full text link
    The rise of topological phases of matter is strongly connected to their potential to host Majorana bound states, a powerful ingredient in the search for a robust, topologically protected, quantum information processing. In order to produce such states, a method of choice is to induce superconductivity in topological insulators. The engineering of the interplay between superconductivity and the electronic properties of a topological insulator is a challenging task and it is consequently very important to understand the physics of simple superconducting devices such as Josephson junctions, in which new topological properties are expected to emerge. In this article, we review recent experiments investigating topological superconductivity in topological insulators, using microwave excitation and detection techniques. More precisely, we have fabricated and studied topological Josephson junctions made of HgTe weak links in contact with two Al or Nb contacts. In such devices, we have observed two signatures of the fractional Josephson effect, which is expected to emerge from topologically-protected gapless Andreev bound states. We first recall the theoretical background on topological Josephson junctions, then move to the experimental observations. Then, we assess the topological origin of the observed features and conclude with an outlook towards more advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017, published in "Topological Matter. Springer Series in Solid-State Sciences, vol 190. Springer

    [Plasma 2020 Decadal] Disentangling the Spatiotemporal Structure of Turbulence Using Multi-Spacecraft Data

    Get PDF
    This white paper submitted for 2020 Decadal Assessment of Plasma Science concerns the importance of multi-spacecraft missions to address fundamental questions concerning plasma turbulence. Plasma turbulence is ubiquitous in the universe, and it is responsible for the transport of mass, momentum, and energy in such diverse systems as the solar corona and wind, accretion discs, planet formation, and laboratory fusion devices. Turbulence is an inherently multi-scale and multi-process phenomenon, coupling the largest scales of a system to sub-electron scales via a cascade of energy, while simultaneously generating reconnecting current layers, shocks, and a myriad of instabilities and waves. The solar wind is humankind's best resource for studying the naturally occurring turbulent plasmas that permeate the universe. Since launching our first major scientific spacecraft mission, Explorer 1, in 1958, we have made significant progress characterizing solar wind turbulence. Yet, due to the severe limitations imposed by single point measurements, we are unable to characterize sufficiently the spatial and temporal properties of the solar wind, leaving many fundamental questions about plasma turbulence unanswered. Therefore, the time has now come wherein making significant additional progress to determine the dynamical nature of solar wind turbulence requires multi-spacecraft missions spanning a wide range of scales simultaneously. A dedicated multi-spacecraft mission concurrently covering a wide range of scales in the solar wind would not only allow us to directly determine the spatial and temporal structure of plasma turbulence, but it would also mitigate the limitations that current multi-spacecraft missions face, such as non-ideal orbits for observing solar wind turbulence. Some of the fundamentally important questions that can only be addressed by in situ multipoint measurements are discussed
    corecore