371 research outputs found

    Plasma Nanoscience: from Nano-Solids in Plasmas to Nano-Plasmas in Solids

    Full text link
    The unique plasma-specific features and physical phenomena in the organization of nanoscale solid-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter, to nano-plasma effects and nano-plasmas of different states of matter.Comment: This is an essential interdisciplinary reference which can be used by both advanced and early career researchers as well as in undergraduate teaching and postgraduate research trainin

    Incidence and identification of mesophilic <i>Aeromonas</i> spp. from retail foods

    Get PDF
    Sixty-eight food samples were examined for the presence of mesophilic Aeromonas species both qualitatively and quantitatively. Aeromonads were isolated from 26% of the vegetable samples, 70% of the meat and poultry samples and 72% of the fish and shrimps. Numbers of motile aeromonads present in the food samples varied from 2 cfu g-1 to >105 cfu g-1. GLC analysis of FAMEs was used to identify a selection of presumptive Aeromonas colonies to fenospecies or genomic species level. Aeromonas strains belonging to the Aer. caviae complex, which also includes the potentially pathogenic genospecies HG4, were mostly isolated from vegetables but were also found in meat, poultry and fish. In addition, three strains of the virulent taxon Aer. veronii biovar sobria HG8 were isolated from poultry and minced meat. All members of the Aer. hydrophila complex, predominant in the fish, meat and poultry samples, were classified in the non-virulent taxon HG3. Although the significance of Aeromonas in foods remains undefined, the isolation of Aeromonas HG4 and HG8 strains from a variety of retail foods may indicate that these products can act as possible vehicles for the dessimination of food-borne Aeromonas gastroenteritis

    Asymmetric switching and charge transport in AFLC devices with dissimilar alignment layers

    Full text link
    Surface stabilized antiferroelectric liquid crystal (AFLC) devices with dissimilar alignment layers on the two surfaces are characterized by a shift in the electro-optical response [1] so that it is symmetric with respect to a nonzero voltage (figure 1). Because of this shift, the switching state of a pixel which is initially set by applying a short, selection, voltage pulse, may be maintained without applying any holding, bias, voltage. The stability at zero volts, together with the inherent range of grey levels, typical for antiferroelectric liquid crystals, has some potentially very interesting applications. Generally, the magnitude of the voltage shift changes slowly over time, depending on the driving conditions and the materials used. This varying asymmetry is an important obstacle for the implementation of this technology in real devices. Fig. 1. Asymmetric transmission–voltage characteristic of an AFLC cell with dissimilar alignment layers. 2. The influence of charge in asymmetric AFLC devices Charges in AFLCs can considerably influence the switching behavior of the device [2][3]. Measurements of the electric current flowing towards the electrodes of the device when a voltage step is applied can elucidate the nature and the behavior of these charge

    Potential Use of Antiviral Agents in Polio Eradication

    Get PDF
    These compounds may serve as starting points for the design of more potent poliovirus inhibitors

    Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments

    Get PDF
    ABSTRACT: We report on multi-level atomistic simulations for the interaction of reactive oxygen species (ROS) with the head groups of the phospholipid bilayer, and the subsequent effect of head group and lipid tail oxidation on the structural and dynamic properties of the cell membrane. Our simulations are validated by experiments using a cold atmospheric plasma as external ROS source. We found that plasma treatment leads to a slight initial rise in membrane rigidity, followed by a strong and persistent increase in fluidity, indicating a drop in lipid order. The latter is also revealed by our simulations. This study is important for cancer treatment by therapies producing (extracellular) ROS, such as plasma treatment. These ROS will interact with the cell membrane, first oxidizing the head groups, followed by the lipid tails. A drop in lipid order might allow them to penetrate into the cell interior (e.g., through pores created due to oxidation of the lipid tails) and cause intracellular oxidative damage, eventually leading to cell death. This work in general elucidates the underlying mechanisms of ROS interaction with the cell membrane at the atomic level
    corecore