9 research outputs found

    Bromatological evaluation of eleven corn cultivars harvested at two cutting heights

    No full text
    The objective of this study was to evaluate the chemical composition and dry matter in vitro digestibility of stem, leaf, straw, cob and kernel fractions of eleven corn (Zea mays) cultivars, harvested at two cutting heights. The experiment was designed as randomized blocks, with three replicates, in a 2 × 11 factorial arrangement (eleven cultivars and two cutting heights). The corn cultivars evaluated were D 766, D 657, D 1000, P 3021, P 3041, C 805, C 333, AG 5011, FOR 01, CO 9621 and BR 205, harvested at a low cutting height (5 cm above ground) and a high cutting height (5 cm below the first ear insertion). Cutting height influenced the dry matter content of the stem fraction, which was lower (23.95%) in plants harvested at the low, than in plants harvested at the high cutting height (26.28%). The kernel fraction had the highest dry matter in vitro digestibility (85.13%), while cultivars did not differ between each other. Cob and straw were the fractions with the highest level of neutral detergent fiber (80.74 and 79.77%, respectively) and the lowest level of crude protein (3.84% and 3.69%, respectively). The leaf fraction had the highest crude protein content, both for plants of low and high cuttings (15.55% and 16.20%, respectively). The increase in the plant cutting height enhanced the dry matter content and dry matter in vitro digestibility of stem fraction, but did not affect the DM content of the leaf fraction

    Quantitative studies of the vasculature of the carotid body in the chronically hypoxic rat

    No full text
    The carotid bodies of rats made chronically hypoxic by breathing 12% O2 in a normobaric chamber (inspired PO2 91 mmHg) were compared with those of controls. Serial 5-µm sections of the organs were examined using an interactive image analysis system. The total volume of the carotid bodies was increased by 64%. The total vascular volume rose by 103% and was likely due to an increase in size of the large vessels (>12 µm lumen diameter) because the small vessel (5-12 µm lumen diameter) volume did not increase significantly while the small vessel density tended to decrease. The extravascular volume was increased by 57%. Expressed as a percentage of the total volume of the organ, the total vascular volume did not change, but the small vessel volume was significantly decreased from 7.83 to 6.06%. The large vessel volume must therefore have been increased. The proportion occupied by the extravascular volume was virtually unchanged (84 vs 82%). In accordance with these findings, the small vessel endothelial surface area per unit carotid body volume was diminished from 95.2 to 76.5 mm-1, while the extravascular area per small vessel was increased from 493 to 641 µm2 or by 30%. In conclusion, the enlargement of the carotid body in chronic hypoxia is most likely due to an increase in total vascular volume, mainly involving the "large" vessels, and to an increase in extravascular volume. This is in contrast to our previously published findings indicating that in the spontaneous insulin-dependent diabetic rat the enlargement of the carotid body is due solely to an increase in extravascular volume

    SK channels and the varieties of slow after-hyperpolarizations in neurons

    No full text

    Ion channels in smooth muscle: regulators of intracellular calcium and contractility

    No full text
    corecore