3,334 research outputs found

    A perturbation analysis of spontaneous action potential initiation by stochastic ion channels

    Get PDF
    A stochastic interpretation of spontaneous action potential initiation is developed for the Morris- Lecar equations. Initiation of a spontaneous action potential can be interpreted as the escape from one of the wells of a double well potential, and we develop an asymptotic approximation of the mean exit time using a recently-developed quasi-stationary perturbation method. Using the fact that the activating ionic channel’s random openings and closings are fast relative to other processes, we derive an accurate estimate for the mean time to fire an action potential (MFT), which is valid for a below-threshold applied current. Previous studies have found that for above-threshold applied current, where there is only a single stable fixed point, a diffusion approximation can be used. We also explore why different diffusion approximation techniques fail to estimate the MFT

    Filling of a Poisson trap by a population of random intermittent searchers

    Get PDF
    We extend the continuum theory of random intermittent search processes to the case of NN independent searchers looking to deliver cargo to a single hidden target located somewhere on a semi--infinite track. Each searcher randomly switches between a stationary state and either a leftward or rightward constant velocity state. We assume that all of the particles start at one end of the track and realize sample trajectories independently generated from the same underlying stochastic process. The hidden target is treated as a partially absorbing trap in which a particle can only detect the target and deliver its cargo if it is stationary and within range of the target; the particle is removed from the system after delivering its cargo. As a further generalization of previous models, we assume that up to nn successive particles can find the target and deliver its cargo. Assuming that the rate of target detection scales as 1/N1/N, we show that there exists a well--defined mean field limit N→∞N\rightarrow \infty, in which the stochastic model reduces to a deterministic system of linear reaction--hyperbolic equations for the concentrations of particles in each of the internal states. These equations decouple from the stochastic process associated with filling the target with cargo. The latter can be modeled as a Poisson process in which the time--dependent rate of filling λ(t)\lambda(t) depends on the concentration of stationary particles within the target domain. Hence, we refer to the target as a Poisson trap. We analyze the efficiency of filling the Poisson trap with nn particles in terms of the waiting time density fn(t)f_n(t). The latter is determined by the integrated Poisson rate μ(t)=∫0tλ(s)ds\mu(t)=\int_0^t\lambda(s)ds, which in turn depends on the solution to the reaction-hyperbolic equations. We obtain an approximate solution for the particle concentrations by reducing the system of reaction-hyperbolic equations to a scalar advection--diffusion equation using a quasi-steady-state analysis. We compare our analytical results for the mean--field model with Monte-Carlo simulations for finite NN. We thus determine how the mean first passage time (MFPT) for filling the target depends on NN and nn

    Local synaptic signaling enhances the stochastic transport of\ud motor-driven cargo in neurons

    Get PDF
    The tug-of-war model of motor-driven cargo transport is formulated as an intermittent trapping process. An immobile trap, representing the cellular machinery that sequesters a motor-driven cargo for eventual use, is located somewhere within a microtubule track. A particle representing a motor-driven cargo that moves randomly with a forward bias is introduced at the beginning of the track. The particle switches randomly between a fast moving phase and a slow moving phase. When in the slow moving phase, the particle can be captured by the trap. To account for the possibility the particle avoids the trap, an absorbing boundary is placed at the end of the track. Two local signaling mechanisms—intended to improve the chances of capturing the target—are considered by allowing the trap to affect the tug-of-war parameters within a small region around itself. The first is based on a localized adenosine triphosphate (ATP) concentration gradient surrounding a synapse, and the second is based on a concentration of tau—a microtubule-associated protein involved in Alzheimer’s disease—coating the microtubule near the synapse. It is shown that both mechanisms can lead to dramatic improvements in the capture probability, with a minimal increase in the mean capture time. The analysis also shows that tau can cause a cargo to undergo random oscillations, which could explain some experimental observations

    Stochastic models of intracellular transport

    Get PDF
    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an over-damped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of ATP hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review we present a wide range of analytical methods and models of intracellular transport. In the case of diffusive transport, we consider narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion. In the case of active transport, we consider Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean field approximations. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self–organization of subcellular structures

    Uniform asymptotic approximation of diffusion to a small target: Generalized reaction models

    Get PDF
    The diffusion of a reactant to a binding target plays a key role in many biological processes. The reaction radius at which the reactant and target may interact is often a small parameter relative to the diameter of the domain in which the reactant diffuses. We develop uniform in time asymptotic expansions in the reaction radius of the full solution to the corresponding diffusion equations for two separate reactant-target interaction mechanisms: the Doi or volume reactivity model and the Smoluchowski-Collins-Kimball partial-absorption surface reactivity model. In the former, the reactant and target react with a fixed probability per unit time when within a specified separation. In the latter, upon reaching a fixed separation, they probabilistically react or the reactant reflects away from the target. Expansions of the solution to each model are constructed by projecting out the contribution of the first eigenvalue and eigenfunction to the solution of the diffusion equation and then developing matched asymptotic expansions in Laplace-transform space. Our approach offers an equivalent, but alternative, method to the pseudopotential approach we previously employed [Isaacson and Newby, Phys. Rev. E 88, 012820 (2013)PLEEE81539-375510.1103/PhysRevE.88.012820] for the simpler Smoluchowski pure-absorption reaction mechanism. We find that the resulting asymptotic expansions of the diffusion equation solutions are identical with the exception of one parameter: the diffusion-limited reaction rates of the Doi and partial-absorption models. This demonstrates that for biological systems in which the reaction radius is a small parameter, properly calibrated Doi and partial-absorption models may be functionally equivalent

    Isolating intrinsic noise sources in a stochastic genetic switch

    Get PDF
    The stochastic mutual repressor model is analysed using perturbation methods. This simple model of a gene circuit consists of two genes and three promotor states. Either of the two protein products can dimerize, forming a repressor molecule that binds to the promotor of the other gene. When the repressor is bound to a promotor, the corresponding gene is not transcribed and no protein is produced. Either one of the promotors can be repressed at any given time or both can be unrepressed, leaving three possible promotor states. This model is analysed in its bistable regime in which the deterministic limit exhibits two stable fixed points and an unstable saddle, and the case of small noise is considered. On small time scales, the stochastic process fluctuates near one of the stable fixed points, and on large time scales, a metastable transition can occur, where fluctuations drive the system past the unstable saddle to the other stable fixed point. To explore how different intrinsic noise sources affect these transitions, fluctuations in protein production and degradation are eliminated, leaving fluctuations in the promotor state as the only source of noise in the system. Perturbation methods are then used to compute the stability landscape and the distribution of transition times, or first exit time density. To understand how protein noise affects the system, small magnitude fluctuations are added back into the process, and the stability landscape is compared to that of the process without protein noise. It is found that significant differences in the random process emerge in the presence of protein noise

    Design and evaluation of fluidized bed heat recovery for diesel engine systems

    Get PDF
    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases
    • …
    corecore