1,059 research outputs found

    Film Boiling Heat Transfer From An Oscillating Sphere

    Get PDF
    An experimental investigation has been undertaken to determine the effect of oscillation of the heat transfer surface on turbulent film boiling heat transfer. A transient technique was used to calculate the heat flux from copper spheres of 1 in., 3/4 in., and 1/2 in. dia. In all tests, saturated liquid nitrogen at atmospheric pressure was used as the boiling fluid. The data obtained were found to be in good agreement with published theory at zero frequency. The range of frequencies studied was from zero to approximately 12 cps at peak-to-peak amplitudes of 2 in. and 1 in., i.e., at amplitude-to-diameter ratios of 1.00, 1.34, 2.00, 2.67, and 4.00. It was determined that oscillation of the heat transfer surface considerably increases the heal flux for a given temperature difference over that for natural convection film boiling. The results were correlated with a maximum deviation of +35, -17 percent. The correlation equation showed that the Nusselt number was proportional to the vibrational Froude number to the 2/3 power. Tests were conducted with spheres having a corroded surface, a glass-bead-peened surface and a Teflon-coated surface. The results show that the turbulent film boiling from an oscillating sphere is independent of the condition of the heat transfer surface over the range of frequencies and amplitudes tested. © 1969 by ASME

    Turbulence regulation and stabilization by equilibrium and Time-varying sheared turbulence flows

    Get PDF
    Turbulence flows are directly measured in a tokamak plasma by applying time-delay-estimation (TDE) analysis to localized 2-D density fluctuation measurements obtained with Beam Emission Spectroscopy on DIII-D. The equilibrium radial flow shear near the plasma edge (0.8 < r/a < 1) varies strongly with magnetic geometry. With the ion grad-B drift directed towards the X-point in a single null plasma, a large radial shear in the poloidal flow is measured, while little shear is observed in the reverse condition. This large shear appears to facilitate the L-to H-mode transition, consistent with the significantly lower LH transition power threshold in this configuration. In addition, time varying, radially localized (k . ρI < 1) flows with a semi-coherent structure peaked near 15 KHz and a very long poloidal wavelength, possibly m=0, are observed. These characteristics are very similar to theoretically predicted zonal flows that are self-generated by and in turn regulate the turbulence

    Strong "quantum" chaos in the global ballooning mode spectrum of three-dimensional plasmas

    Full text link
    The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. In this paper, ideal MHD is regularized by using a kk-space cutoff, making the ray tracing for the WKB ballooning formalism a chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier spectrum needed for resolving toroidally localized ballooning modes with a global eigenvalue code is estimated from the Weyl formula. This phase-space-volume estimation method is applied to two stellarator cases.Comment: 4 pages typeset, including 2 figures. Paper accepted for publication in Phys. Rev. Letter

    Validation in Fusion Research: Towards Guidelines and Best Practices

    Full text link
    Because experiment/model comparisons in magnetic confinement fusion have not yet satisfied the requirements for validation as understood broadly, a set of approaches to validating mathematical models and numerical algorithms are recommended as good practices. Previously identified procedures, such as verification, qualification, and analysis of error and uncertainty, remain important. However, particular challenges intrinsic to fusion plasmas and physical measurement therein lead to identification of new or less familiar concepts that are also critical in validation. These include the primacy hierarchy, which tracks the integration of measurable quantities, and sensitivity analysis, which assesses how model output is apportioned to different sources of variation. The use of validation metrics for individual measurements is extended to multiple measurements, with provisions for the primacy hierarchy and sensitivity. This composite validation metric is essential for quantitatively evaluating comparisons with experiments. To mount successful and credible validation in magnetic fusion, a new culture of validation is envisaged.Comment: 27 pages, 1 table, 6 figure

    Asymptotics and local constancy of characters of p-adic groups

    Full text link
    In this paper we study quantitative aspects of trace characters Θπ\Theta_\pi of reductive pp-adic groups when the representation π\pi varies. Our approach is based on the local constancy of characters and we survey some other related results. We formulate a conjecture on the behavior of Θπ\Theta_\pi relative to the formal degree of π\pi, which we are able to prove in the case where π\pi is a tame supercuspidal. The proof builds on J.-K.~Yu's construction and the structure of Moy-Prasad subgroups.Comment: Proceedings of Simons symposium on the trace formul

    Transport by intermittency in the boundary of the DIII-D tokamak

    Get PDF
    A271 TRANSPORT BY INTERMITTENCY IN THE BOUNDARY OF THE DIII-D TOKAMAK. Intermittent plasma objectives (IPOs) featuring higher pressure than the surrounding plasma, are responsible for {approx} 50% of the E x B{sub T} radial transport in the scrape off layer (SOL) of the DIII-D tokamak in L- and H-mode discharges. Conditional averaging reveals that the IPOs are positively charged and feature internal poloidal electric fields of up to 4000 V/m. The IPOs move radially with E x B{sub T}/B{sup 2} velocities of {approx} 2600 m/s near the last closed flux surface (LCFS), and {approx} 330 m/s near the wall. The IPOs slow down as they shrink in radial size from 4 cm at the LCFS to 0.5 cm near the wall. The skewness (i.e. asymmetry of fluctuations from the average) of probe and beam emission spectroscopy (BES) data indicate IPO formation at or near the LCFS and the existence of positive and negative IPOs which move in opposite directions. The particle content of the IPOs at the LCFS is linearly dependent on the local density and decays over {approx} 3 cm into the SOL while their temperature decays much faster ({approx} 1 cm)
    corecore