7,261 research outputs found
Maxwell-Chern-Simons vortices in a CPT-odd Lorentz-violating Higgs Electrodynamics
We have studied BPS vortices in a CPT-odd and Lorentz-violating
Maxwell-Chern-Simons-Higgs (MCSH) electrodynamics attained from the dimensional
reduction of the Carroll-Field-Jackiw-Higgs model. The Lorentz-violating
parameter induces a pronounced behavior at origin (for the magnetic/electric
fields and energy density) which is absent in the MCSH vortices. For some
combination of the Lorentz-violating coefficients there always exist a
sufficiently large winding number such that for all
the magnetic field flips its signal, yielding two well defined regions with
opposite magnetic flux. However, the total magnetic flux remains quantized and
proportional to the winding number.Comment: Revtex style, 8 page
Modeling dark sector in Horndeski gravity at first-order formalism
We investigate a cosmological scenario by finding solutions using first-order
formalism in the Horndeski gravity that constrains the superpotential and
implies that no free choice of scalar potential is allowed. Despite this we
show that a de Sitter phase at late-time cosmology can be realized, where the
dark energy sector can be identified. The scalar field equation of state tends
to the cosmological scenario at present time and allows us to conclude that it
can simulate the dark energy in the Horndeski gravity.Comment: Latex, 17 pages, 2 figures; version to appear in AHE
Magnetic reconfiguration of MnAs/GaAs(001) observed by Magnetic Force Microscopy and Resonant Soft X-ray Scattering
We investigated the thermal evolution of the magnetic properties of MnAs
epitaxial films grown on GaAs(001) during the coexistence of
hexagonal/orthorhombic phases using polarized resonant (magnetic) soft X-ray
scattering and magnetic force microscopy. The results of the diffuse satellite
X-ray peaks were compared to those obtained by magnetic force microscopy and
suggest a reorientation of ferromagnetic terraces as temperature rises. By
measuring hysteresis loops at these peaks we show that this reorientation is
common to all ferromagnetic terraces. The reorientation is explained by a
simple model based on the shape anisotropy energy. Demagnetizing factors were
calculated for different configurations suggested by the magnetic images. We
noted that the magnetic moments flip from an in-plane mono-domain orientation
at lower temperatures to a three-domain out-of-plane configuration at higher
temperatures. The transition was observed when the ferromagnetic stripe width L
is equal to 2.9 times the film thickness d. This is in good agreement with the
expected theoretical value of L = 2.6d.Comment: 16 pages in PD
X-ray method to study temperature-dependent stripe domains in MnAs/GaAs(001)
MnAs films grown on GaAs (001) exhibit a progressive transition between
hexagonal (ferromagnetic) and orthorhombic (paramagnetic) phases at wide
temperature range instead of abrupt transition during the first-order phase
transition. The coexistence of two phases is favored by the anisotropic strain
arising from the constraint on the MnAs films imposed by the substrate. This
phase coexistence occurs in ordered arrangement alternating periodic terrace
steps. We present here a method to study the surface morphology throughout this
transition by means of specular and diffuse scattering of soft x-rays, tuning
the photon energy at the Mn 2p resonance. The results show the long-range
arrangement of the periodic stripe-like structure during the phase coexistence
and its period remains constant, in agreement with previous results using other
techniques.Comment: 4 pages, 4 figures, submitted to Applied Physics Letter
Supersymmetrization of the Radiation Damping
We construct a supersymmetrized version of the model to the radiation damping
\cite{03} introduced by the present authors \cite{ACWF}. We dicuss its
symmetries and the corresponding conserved Noether charges. It is shown this
supersymmetric version provides a supersymmetric generalization of the Galilei
algebra obtained in \cite{ACWF}. We have shown that the supersymmetric action
can be splited into dynamically independent external and internal sectors.Comment: 9 page
Invasive Meningococcal Disease Unraveling a Novel Mutation in the C5 Gene in a Portuguese Family
Although bacterial meningitis is a rare presentation of a congenital immunodeficiency, invasive meningococcal disease is classically associated with complement deficiencies. We report a patient from a consanguineous kindred presenting with an invasive meningococcal disease caused by serogroup B meningococcus that revealed an underlying C5 deficiency caused by a novel mutation in the C5 gene.info:eu-repo/semantics/publishedVersio
Co‐existing monophasic teratoma and uterine adenocarcinoma in a female dog
Ovarian teratomas are occasionally reported in dogs; the rarest type is the monophasic teratoma,composed of tissues originating from only one germ layer. Canine endometrial adenocarcinomas are also rare in dogs and mainly affect geriatric females.
This report describes case of co-existing ovarian teratoma and uterine adenocarcinoma in a 10-year old nulliparous female Boxer presented with lethargy, anorexia and purulent vaginal discharge.
Abdominal ultrasonography evidenced pyometra and a mass in the left ovary. This was composed of
a uniform whitish tissue with multiple cystic structures. The histology revealed an atrophy of the ovarian parenchyma, compressed by a proliferation of well-differentiated nervous tissue staining positively to vimentin, S100 and neuronal specific enolase (NSE), and negatively to keratin and inhibin. The left uterine horn, whose diameter was markedly increased, showed foci of endometrial cellular atypia, evident nucleoli and mitoses, at light microscopy.
To our best knowledge, this is the first report of a coexisting ovarian monophasic teratoma and
endometrial adenocarcinoma, two rare reproductive neoplasia in dogs
- …