1,073 research outputs found

    Warped brane-world compactification with Gauss-Bonnet term

    Full text link
    In the Randall-Sundrum (RS) brane-world model a singular delta-function source is matched by the second derivative of the warp factor. So one should take possible curvature corrections in the effective action of the RS models in a Gauss-Bonnet (GB) form. We present a linearized treatment of gravity in the RS brane-world with the Gauss-Bonnet modification to Einstein gravity. We give explicit expressions for the Neumann propagator in arbitrary D dimensions and show that a bulk GB term gives, along with a tower of Kaluza-Klein modes in the bulk, a massless graviton on the brane, as in the standard RS model. Moreover, a non-trivial GB coupling can allow a new branch of solutions with finite Planck scale and no naked bulk singularity, which might be useful to avoid some of the previously known ``no--go theorems'' for RS brane-world compactifications.Comment: 23 pages, typos in Secs. 5 & 6 corrected, expanded/published version (IJMPA

    Reconstructing a model of quintessential inflation

    Full text link
    We present an explicit cosmological model where inflation and dark energy both could arise from the dynamics of the same scalar field. We present our discussion in the framework where the inflaton field ϕ\phi attains a nearly constant velocity mP1dϕ/dNα+βexp(βN)m_P^{-1} |d\phi/dN|\equiv \alpha+\beta \exp(\beta N) (where NlnaN\equiv \ln a is the e-folding time) during inflation. We show that the model with α<0.25|\alpha|<0.25 and β<0\beta<0 can easily satisfy inflationary constraints, including the spectral index of scalar fluctuations (ns=0.96±0.013n_s=0.96\pm 0.013), tensor-to-scalar ratio (r<0.28r<0.28) and also the bound imposed on Ωϕ\Omega_\phi during the nucleosynthesis epoch (Ωϕ(1MeV)<0.1\Omega_\phi (1 {\rm MeV})<0.1). In our construction, the scalar field potential always scales proportionally to the square of the Hubble expansion rate. One may thereby account for the two vastly different energy scales associated with the Hubble parameters at early and late epochs. The inflaton energy could also produce an observationally significant effective dark energy at a late epoch without violating local gravity tests.Comment: 18 pages, 7 figures; added refs, published versio

    Warped compactification on curved manifolds

    Full text link
    The characterization of a six- (or seven)-dimensional internal manifold with metric as having positive, zero or negative curvature is expected to be an important aspect of warped compactifications in supergravity. In this context, Douglas and Kallosh recently pointed out that a compact internal space with negative curvature could help to construct four-dimensional de Sitter solutions only if the extra dimensions are strongly warped or there are large stringy corrections. That is, the problem of finding 4-dimensional de Sitter solutions is well posed, if all extra dimensions are physically compact, which is called a no-go theorem. Here, we show that the above conclusion does not extend to a general class of warped compactifications in classical supergravity that allow a non-compact direction or cosmological solutions for which the internal space is asymptotic to a cone over a product of compact Einstein spaces or spheres. For clarity, we present classical solutions that compactify higher-dimensional spacetime to produce a Robertson--Walker universe with de Sitter-type expansion plus one extra non-compact direction. Such models are found to admit both an effective four-dimensional Newton constant that remains finite and a normalizable zero-mode graviton wavefunction. We also exhibit the possibility of obtaining 4D de Sitter solutions by including the effect of fluxes (p-form field strengths).Comment: 24 pages, 1 figure; v5 significant changes in the presentation, published (journal) versio

    Accelerating universe from warped extra dimensions

    Full text link
    Accelerating universe or the existence of a small and positive cosmological constant is probably the most pressing obstacle as well as opportunity to significantly improving the models of four-dimensional cosmology from fundamental theories of gravity, including string theory. In seeking to resolve this problem, one naturally wonders if the real world can somehow be interpreted as an inflating de Sitter brane embedded in a higher-dimensional spacetime described by warped geometry. In this scenario, the four-dimensional cosmological constant may be uniquely determined in terms of two length scales: one is a scale associated with the size of extra dimensions and the other is a scale associated with the expansion rate of our universe. In some specific cases, these two scales are complementary to each other. This result is demonstrated here by presenting some explicit and completely non-singular de Sitter space dS4_4 solutions of vacuum Einstein equations in five and ten dimensions.Comment: 7 pages; extended (from journal) version, minor typos fixed, refs adde

    On compatibility of string effective action with an accelerating universe

    Full text link
    In this paper, we fully investigate the cosmological effects of the moduli dependent one-loop corrections to the gravitational couplings of the string effective action to explain the cosmic acceleration problem in early (and/or late) universe. These corrections comprise a Gauss-Bonnet (GB) invariant multiplied by universal non-trivial functions of the common modulus σ\sigma and the dilaton ϕ\phi. The model exhibits several features of cosmological interest, including the transition between deceleration and acceleration phases. By considering some phenomenologically motivated ansatzs for one of the scalars and/or the scale factor (of the universe), we also construct a number of interesting inflationary potentials. In all examples under consideration, we find that the model leads only to a standard inflation (w1w \geq -1) when the numerical coefficient δ\delta associated with modulus-GB coupling is positive, while the model can lead also to a non-standard inflation (w<1w<-1), if δ\delta is negative. In the absence of (or trivial) coupling between the GB term and the scalars, there is no crossing between the w1w -1 phases, while this is possible with non-trivial GB couplings, even for constant dilaton phase of the standard picture. Within our model, after a sufficient amount of e-folds of expansion, the rolling of both fields ϕ\phi and σ\sigma can be small. In turn, any possible violation of equivalence principle or deviations from the standard general relativity may be small enough to easily satisfy all astrophysical and cosmological constraints.Comment: 30 pages, 8 figures; v2 significant changes in notations, appendix and refs added; v3 significant revisions, refs added; v4 appendix extended, new refs, published versio

    Phylogenomics of the pantropical tribe Spermacoceae: resolving taxonomic challenges and phylogenetic relationships using whole plastome data

    Get PDF
    The pantropical tribe Spermacoceae comprises approximately 1000 species and belongs to the largest subfamily, Rubioideae, within the Rubiaceae family. The genera within the Spermacoceae tribe have a long history of taxonomic confusión and disagreement due to the utilization of inconsistent and overlapping characters in their generic delimitations. Previous molecular phylogenetic studies have made significant contributions to resolving many taxonomic inconsistencies, primarily focusing on taxa from Asia-Pacific and Australia. However, challenges persist in understanding the phylogenetic relationships and taxonomy o f Spermacoceae members from the Americas and Africa. In this study, we employ whole-genome plastid data of Spermacoceae members to address these challenges. Our presentation will primarily focus on two objectives: (1) presenting the first plastome phylogeny of Spermacoceae, primarily representing members from North America, and (2) investigating phylogenetic congruence among genes and phylogenetic signáis within genes using Bayesian and other methods. By shedding light on the phylogenetic relationships and resolving taxonomic inconsistencies, our research contributes to a better understanding of the evolutionary history and taxonomy o f the Spermacoceae tribe. This work is part of an ongoing effort to construct a global genome-wide phylogeny of the Spermacoceae tribe through the utilization of high-throughput DNA data

    Completely localized gravity with higher curvature terms

    Full text link
    In the intersecting braneworld models, higher curvature corrections to the Einstein action are necessary to provide a non-trivial geometry (brane tension) at the brane junctions. By introducing such terms in a Gauss-Bonnet form, we give an effective description of localized gravity on the singular delta-function branes. There exists a non-vanishing brane tension at the four-dimensional brane intersection of two 4-branes. Importantly, we give explicit expressions of the graviton propagator and show that the Randall-Sundrum single-brane model with a Gauss-Bonnet term in the bulk correctly gives a massless graviton on the brane as for the RS model. We explore some crucial features of completely localized gravity in the solitonic braneworld solutions obtained with a choice (\xi=1) of solutions. The no-go theorem known for Einstein's theory may not apply to the \xi=1 solution. As complementary discussions, we provide an effective description of the power-law corrections to Newtonian gravity on the branes or at the common intersection thereof.Comment: 19 pages, LaTeX, Revised/Published Versio

    Late-time Cosmic Dynamics from M-theory

    Full text link
    We consider the behaviour of the cosmological acceleration for time-dependent hyperbolic and flux compactifications of M-theory, with an exponential potential. For flat and closed cosmologies it is seen that a positive acceleration is always transient for both compactifications. For open cosmologies, both compactifications can give at late times periods of positive acceleration. As a function of proper time this acceleration has a power law decay and can be either positive, negative or oscillatory.Comment: 10 pages, LaTeX, 2 figure

    Towards inflation and dark energy cosmologies from modified Gauss-Bonnet theory

    Full text link
    We consider a physically viable cosmological model that has a field dependent Gauss-Bonnet coupling in its effective action, in addition to a standard scalar field potential. The presence of such terms in the four dimensional effective action gives rise to several novel effects, such as a four dimensional flat Friedmann-Robertson-Walker universe undergoing a cosmic inflation at early epoch, as well as a cosmic acceleration at late times. The model predicts, during inflation, spectra of both density perturbations and gravitational waves that may fall well within the experimental bounds. Furthermore, this model provides a mechanism for reheating of the early universe, which is similar to a model with some friction terms added to the equation of motion of the scalar field, which can imitate energy transfer from the scalar field to matterComment: 35 pages, 21 eps figs; section 6 expanded improving explanations, refs added, final in JCA
    corecore