110 research outputs found

    Applied general relativity

    Get PDF
    Important relativistic effects and issues are discussed which must be considered in the interpretation of current measurements such as ranging measurements to LAGEOS and to the moon, in the implementation of the Global Positioning System, in the synchronization of clocks near the earth's surface, and in the adoption of appropriate scales of time and length for the communication of scientific results

    Geodetic precession or dragging of inertial frames

    Get PDF
    In General Relativity, the Principle of General Covariance allows one to describe phenomena by means of any convenient choice of coordinate system. Here, it is shown that the geodetic precession of a gyroscope orbiting a spherically symmetric, nonrotating mass can be recast as a Lense-Thirring frame-dragging effect, in an appropriately chosen coordinate frame whose origin falls freely along with the gyroscope and whose spatial coordinate axes point in fixed directions

    Comparison of relativistic effects in barycentric and Earth-centered coordinates and implications for determination of GM for Earth

    Get PDF
    The results of an investigation of relativistic effects which have an influence on the determination of GM sub E (M sub E is the mass of the Earth, G is the Newtonian gravitaional constant) are summarized. The detailed arguments and derivations are discussed. The Parametrized Post-Newtonian (PPN) coordinates; Eddington-Clark (EC) coordinates; a coordinate system based on barycentric dynamical time (TBC coordinates); and Local Inertial coordinates are discussed
    corecore