392 research outputs found

    Detecting Multiple Communities Using Quantum Annealing on the D-Wave System

    Full text link
    A very important problem in combinatorial optimization is partitioning a network into communities of densely connected nodes; where the connectivity between nodes inside a particular community is large compared to the connectivity between nodes belonging to different ones. This problem is known as community detection, and has become very important in various fields of science including chemistry, biology and social sciences. The problem of community detection is a twofold problem that consists of determining the number of communities and, at the same time, finding those communities. This drastically increases the solution space for heuristics to work on, compared to traditional graph partitioning problems. In many of the scientific domains in which graphs are used, there is the need to have the ability to partition a graph into communities with the ``highest quality'' possible since the presence of even small isolated communities can become crucial to explain a particular phenomenon. We have explored community detection using the power of quantum annealers, and in particular the D-Wave 2X and 2000Q machines. It turns out that the problem of detecting at most two communities naturally fits into the architecture of a quantum annealer with almost no need of reformulation. This paper addresses a systematic study of detecting two or more communities in a network using a quantum annealer

    Shadow Energy Functionals and Potentials in Born-Oppenheimer Molecular Dynamics

    Full text link
    In Born-Oppenheimer molecular dynamics (BOMD) simulations based on density functional theory (DFT), the potential energy and the interatomic forces are calculated from an electronic ground state density that is determined by an iterative self-consistent field optimization procedure, which in practice never is fully converged. The calculated energies and the forces are therefore only approximate, which may lead to an unphysical energy drift and instabilities. Here we discuss an alternative shadow BOMD approach that is based on a backward error analysis. Instead of calculating approximate solutions for an underlying exact regular BO potential, we do the opposite. Instead, we calculate the exact electron density, energies, and forces, but for an underlying approximate shadow BO potential. In this way the calculated forces are conservative with respect to the shadow potential and generate accurate molecular trajectories with long-term energy stability. We show how such shadow BO potentials can be constructed at different levels of accuracy as a function of the integration time step, dt, from the minimization of a sequence of systematically improvable, but approximate, shadow energy density functionals. For each functional there is a corresponding ground state BO potential. These pairs of shadow energy functionals and potentials are higher-level generalizations of the original "0th-level" shadow energy functionals and potentials used in extended Lagrangian BOMD [Eur. Phys. J. B vol. 94, 164 (2021)]. The proposed shadow energy functionals and potentials are useful only within this dynamical framework, where also the electronic degrees of freedom are propagated together with the atomic positions and velocities. The theory is general and can be applied to MD simulations using approximate DFT, Hartree-Fock or semi-empirical methods, as well as to coarse-grained flexible charge models.Comment: 16 pages, 3 figure

    Quantum Isomer Search

    Full text link
    Isomer search or molecule enumeration refers to the problem of finding all the isomers for a given molecule. Many classical search methods have been developed in order to tackle this problem. However, the availability of quantum computing architectures has given us the opportunity to address this problem with new (quantum) techniques. This paper describes a quantum isomer search procedure for determining all the structural isomers of alkanes. We first formulate the structural isomer search problem as a quadratic unconstrained binary optimization (QUBO) problem. The QUBO formulation is for general use on either annealing or gate-based quantum computers. We use the D-Wave quantum annealer to enumerate all structural isomers of all alkanes with fewer carbon atoms (n < 10) than Decane (C10H22). The number of isomer solutions increases with the number of carbon atoms. We find that the sampling time needed to identify all solutions scales linearly with the number of carbon atoms in the alkane. We probe the problem further by employing reverse annealing as well as a perturbed QUBO Hamiltonian and find that the combination of these two methods significantly reduces the number of samples required to find all isomers.Comment: 20 pages, 9 figure

    Matrix Diagonalization as a Board Game: Teaching an Eigensolver the Fastest Path to Solution

    Full text link
    Matrix diagonalization is at the cornerstone of numerous fields of scientific computing. Diagonalizing a matrix to solve an eigenvalue problem requires a sequential path of iterations that eventually reaches a sufficiently converged and accurate solution for all the eigenvalues and eigenvectors. This typically translates into a high computational cost. Here we demonstrate how reinforcement learning, using the AlphaZero framework, can accelerate Jacobi matrix diagonalizations by viewing the selection of the fastest path to solution as a board game. To demonstrate the viability of our approach we apply the Jacobi diagonalization algorithm to symmetric Hamiltonian matrices that appear in quantum chemistry calculations. We find that a significant acceleration can often be achieved. Our findings highlight the opportunity to use machine learning as a promising tool to improve the performance of numerical linear algebra.Comment: 14 page

    Multilevel Combinatorial Optimization Across Quantum Architectures

    Get PDF
    Emerging quantum processors provide an opportunity to explore new approaches for solving traditional problems in the post Moore's law supercomputing era. However, the limited number of qubits makes it infeasible to tackle massive real-world datasets directly in the near future, leading to new challenges in utilizing these quantum processors for practical purposes. Hybrid quantum-classical algorithms that leverage both quantum and classical types of devices are considered as one of the main strategies to apply quantum computing to large-scale problems. In this paper, we advocate the use of multilevel frameworks for combinatorial optimization as a promising general paradigm for designing hybrid quantum-classical algorithms. In order to demonstrate this approach, we apply this method to two well-known combinatorial optimization problems, namely, the Graph Partitioning Problem, and the Community Detection Problem. We develop hybrid multilevel solvers with quantum local search on D-Wave's quantum annealer and IBM's gate-model based quantum processor. We carry out experiments on graphs that are orders of magnitudes larger than the current quantum hardware size, and we observe results comparable to state-of-the-art solvers in terms of quality of the solution
    • …
    corecore