30 research outputs found
Cross-talk between cd1d-restricted nkt cells and γδ cells in t regulatory cell response
CD1d is a non-classical major histocompatibility class 1-like molecule which primarily presents either microbial or endogenous glycolipid antigens to T cells involved in innate immunity. Natural killer T (NKT) cells and a subpopulation of γδ T cells expressing the Vγ4 T cell receptor (TCR) recognize CD1d. NKT and Vγ4 T cells function in the innate immune response via rapid activation subsequent to infection and secrete large quantities of cytokines that both help control infection and modulate the developing adaptive immune response. T regulatory cells represent one cell population impacted by both NKT and Vγ4 T cells. This review discusses the evidence that NKT cells promote T regulatory cell activation both through direct interaction of NKT cell and dendritic cells and through NKT cell secretion of large amounts of TGFβ, IL-10 and IL-2. Recent studies have shown that CD1d-restricted Vγ4 T cells, in contrast to NKT cells, selectively kill T regulatory cells through a caspase-dependent mechanism. Vγ4 T cell elimination of the T regulatory cell population allows activation of autoimmune CD8+ effector cells leading to severe cardiac injury in a coxsackievirus B3 (CVB3) myocarditis model in mice. CD1d-restricted immunity can therefore lead to either immunosuppression or autoimmunity depending upon the type of innate effector dominating during the infection
Recommended from our members
Gut microbiota functions: metabolism of nutrients and other food components
The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays
Individual filamentous phage imaged by electron holography
An in-line electron hologram of an individual f1.K phage was recorded with a purpose-built low energy electron point source (LEEPS) microscope. Cryo-microscopic methods were employed to prepare the specimen so that a single phage could be presented to the coherent low energy electrons: An aqueous phage suspension was applied to a thin carbon membrane with micro-machined slits. The membrane was rapidly cooled to freeze the remaining water as an amorphous ice sheet, which was then sublimated at low temperatures and pressures to leave individual free-standing phages suspended across slits. An image of a phage particle, depicted as the amplitude of the object wave, was reconstructed numerically from a digitized record of the hologram, obtained using 88 eV coherent electrons. The reconstructed image shows a single phage suspended across a slit in a supporting carbon membrane, magnified by a factor of 100,000. The width and shape in the reconstructed image compared well with a TEM image of the same filament. It is thus possible to record and reconstruct electron holograms of an individual phage. The challenge now is to improve the resolution of reconstructed images obtained by this method and to extend these structural studies to other biological molecules