4 research outputs found
Identification of elderly fallers by muscle strength measures
For efficient prevention of falls among older adults, individuals at a high risk of falling need to be identified. In this study, we searched for muscle strength measures that best identified those individuals who would fall after a gait perturbation and those who recovered their balance. Seventeen healthy older adults performed a range of muscle strength tests. We measured maximum and rate of development of ankle plantar flexion moment, knee extension moment and whole leg push-off force, as well as maximum jump height and hand grip strength. Subsequently, their capacity to regain balance after tripping over an obstacle was determined experimentally. Seven of the participants were classified as fallers based on the tripping outcome. Maximum isometric push-off force in a leg press apparatus was the best measure to identify the fallers, as cross-validation of a discriminant model with this variable resulted in the best classification (86% sensitivity and 90% specificity). Jump height and hand grip strength were strongly correlated to leg press force (r = 0.82 and 0.59, respectively) and can also be used to identify fallers, although with slightly lower specificity. These results indicate that whole leg extension strength is associated with the ability to prevent a fall after a gait perturbation and might be used to identify the elderly at risk of falling
Influence of exercise intensity on training-induced tendon mechanical properties changes in older individuals
This study compared the effects of low vs. high intensity training on tendon properties in an elderly population. Participants were pair-matched (gender, habitual physical activity, anthropometrics, and baseline knee extension strength) and then randomly assigned to low (LowR, i.e., ∼40 % 1RM) or high (High R, i.e., ∼80 % 1RM) intensity resistance training programmes for 12 weeks, 3x per week (LowR, n = 9, age 74 ± 5 years; HighR, n = 8, age 68 ± 6 years). Patellar tendon properties (stiffness [K], Young's modulus [YM], cross-sectional area [T CSA], and tendon length [T L]) were measured pre and post training using a combination of magnetic resonance imaging (MRI), B-mode ultrasonography, dynamometry, electromyography and ramped isometric knee extensions. With training K showed no significant change in the LowR group while it incremented by 57.7 % in the HighR group (p < 0.05). The 51.1 % group difference was significant (p < 0.05). These differences were still apparent when the data was normalized for T CSA and T L, i.e., significant increase in YM post-intervention in HighR (p < 0.05), but no change in LowR. These findings suggest that when prescribing exercise for a mixed genders elderly population, exercise intensities of ≤40 % 1RM may not be sufficient to affect tendon properties. © 2014 American Aging Association