676 research outputs found

    Aiming higher to bend the curve of biodiversity loss

    Get PDF
    The development of the post-2020 strategic plan for the Convention on Biological Diversity provides a vital window of opportunity to set out an ambitious plan of action to restore global biodiversity. The components of such a plan, including its goal, targets and some metrics, already exist and provide a roadmap to 2050

    Exhaustive identification of steady state cycles in large stoichiometric networks

    Get PDF
    BACKGROUND: Identifying cyclic pathways in chemical reaction networks is important, because such cycles may indicate in silico violation of energy conservation, or the existence of feedback in vivo. Unfortunately, our ability to identify cycles in stoichiometric networks, such as signal transduction and genome-scale metabolic networks, has been hampered by the computational complexity of the methods currently used. RESULTS: We describe a new algorithm for the identification of cycles in stoichiometric networks, and we compare its performance to two others by exhaustively identifying the cycles contained in the genome-scale metabolic networks of H. pylori, M. barkeri, E. coli, and S. cerevisiae. Our algorithm can substantially decrease both the execution time and maximum memory usage in comparison to the two previous algorithms. CONCLUSION: The algorithm we describe improves our ability to study large, real-world, biochemical reaction networks, although additional methodological improvements are desirable

    Associations between cardiorespiratory fitness, physical activity and clustered cardiometabolic risk in children and adolescents: the HAPPY study

    Get PDF
    Clustering of cardiometabolic risk factors can occur during childhood and predisposes individuals to cardiometabolic disease. This study calculated clustered cardiometabolic risk in 100 children and adolescents aged 10-14 years (59 girls) and explored differences according to cardiorespiratory fitness (CRF) levels and time spent at different physical activity (PA) intensities. CRF was determined using a maximal cycle ergometer test, and PA was assessed using accelerometry. A cardiometabolic risk score was computed as the sum of the standardised scores for waist circumference, blood pressure, total cholesterol/high-density lipoprotein ratio, triglycerides and glucose. Differences in clustered cardiometabolic risk between fit and unfit participants, according to previously proposed health-related threshold values, and between tertiles for PA subcomponents were assessed using ANCOVA. Clustered risk was significantly lower (p < 0.001) in the fit group (mean 1.21 ± 3.42) compared to the unfit group (mean -0.74 ± 2.22), while no differences existed between tertiles for any subcomponent of PA. Conclusion These findings suggest that CRF may have an important cardioprotective role in children and adolescents and highlights the importance of promoting CRF in youth

    Co-evolution of density and topology in a simple model of city formation

    Full text link
    We study the influence that population density and the road network have on each others' growth and evolution. We use a simple model of formation and evolution of city roads which reproduces the most important empirical features of street networks in cities. Within this framework, we explicitely introduce the topology of the road network and analyze how it evolves and interact with the evolution of population density. We show that accessibility issues -pushing individuals to get closer to high centrality nodes- lead to high density regions and the appearance of densely populated centers. In particular, this model reproduces the empirical fact that the density profile decreases exponentially from a core district. In this simplified model, the size of the core district depends on the relative importance of transportation and rent costs.Comment: 13 pages, 13 figure

    Retrospective survey for sialidase activity in Mycoplasma pneumoniae isolates from cases of community-acquired pneumonia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sialidase is a well-known virulence factor of other respiratory pathogens, but was only recently documented to occur in some species of <it>Mycoplasma</it>. The sialidase activity expressed can vary quantitatively among strains within a species of mycoplasma, from undetectable to amounts that correlate positively with strain virulence. Very few isolates of <it>Mycoplasma pneumoniae </it>had ever been examined for sialidase activity, so it was unknown whether sialidase may contribute to diseases involving this species.</p> <p>Findings</p> <p>No sialidase activity was detected by spectrofluorometric assay of 15 laboratory strains and 91 clinical isolates of <it>M. pneumoniae </it>banked over many years from patients having radiologically-confirmed, uncomplicated community-acquired pneumonia.</p> <p>Conclusions</p> <p>The annotated genome of strain M129 (GenBank <ext-link ext-link-id="NC_000912" ext-link-type="gen">NC_000912</ext-link>, <ext-link ext-link-id="ATCC29342" ext-link-type="gen">ATCC 29342</ext-link>), also isolated from a patient with pneumonia, accurately represents the absence of sialidase genes from strains of <it>M. pneumoniae </it>typically associated with uncomplicated community-acquired pneumonia. A possible involvement of sialidase in neurologic or other extra-respiratory manifestations of <it>M. pneumoniae </it>mycoplasmosis remains to be investigated.</p

    Object Detection Through Exploration With A Foveated Visual Field

    Get PDF
    We present a foveated object detector (FOD) as a biologically-inspired alternative to the sliding window (SW) approach which is the dominant method of search in computer vision object detection. Similar to the human visual system, the FOD has higher resolution at the fovea and lower resolution at the visual periphery. Consequently, more computational resources are allocated at the fovea and relatively fewer at the periphery. The FOD processes the entire scene, uses retino-specific object detection classifiers to guide eye movements, aligns its fovea with regions of interest in the input image and integrates observations across multiple fixations. Our approach combines modern object detectors from computer vision with a recent model of peripheral pooling regions found at the V1 layer of the human visual system. We assessed various eye movement strategies on the PASCAL VOC 2007 dataset and show that the FOD performs on par with the SW detector while bringing significant computational cost savings.Comment: An extended version of this manuscript was published in PLOS Computational Biology (October 2017) at https://doi.org/10.1371/journal.pcbi.100574
    • …
    corecore