503 research outputs found
Group additive modeling of substituent effects in monocyclic aromatic hydrocarbon radicals
The thermodynamic properties of the unsubstituted and substituted phenyl, phenoxy, anisyl, benzoyl, styryl and benzyl radicals with six substituents (hydroxy, methoxy, formyl, vinyl, methyl, and ethyl) are calculated with the bond additivity corrected (BAC) post-Hartree-Fock G4 method. Bond dissociation energies of monocyclic aromatic hydrocarbons are calculated and used to identify substituent interactions in these radicals. Benson's Group Additivity (GA) scheme is extended to aromatic radicals by defining 6 GAV and 29 NNI parameters through least squares regression to a database of thermodynamic properties of 369 radicals. Comparison between G4/BAC and GA calculated thermodynamic values shows that the standard enthalpies of formation generally agree within 4 kJ molâ1, whereas the entropies and the heat capacities deviate less than 4 J molâ1 Kâ1
Energy quantization in solution-processed layers of indium oxide and their application in resonant tunneling diodes
\u3cp\u3eThe formation of quantized energy states in ultrathin layers of indium oxide (In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e) grown via spin coating and thermally annealed at 200°C in air is studied. Optical absorption measurements reveal a characteristic widening of the optical band gap with reducing In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e layer thickness from â43 to â3 nm in agreement with theoretical predictions for an infinite quantum well. Through sequential deposition of In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e and gallium oxide (Ga\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e) layers, superlattice-like structures with controlled dimensionality and spatially varying conduction band characteristics are demonstrated. This simple method is then explored for the fabrication of functional double-barrier resonant tunneling diodes. Nanoscale current mapping analysis using conductive atomic force microscopy reveals that resonant tunneling is not uniform but localized in specific regions of the apparent device area. The latter observation is attributed to variation in the layer(s) thickness of the In\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e quantum well and/or the Ga\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e barrier layers. Despite the nonidealities, the tremendous potential of solution-processable oxide semiconductors for the development of quantum effect devices that have so far been demonstrated only via sophisticated growth techniques is demonstrated.\u3c/p\u3
Impact of Tanzania's Wildlife Management Areas on household wealth
Large-scale area-based conservation measures affect millions of people globally. Understanding their social impacts is necessary to improve effectiveness and minimize negative consequences. However, quantifying the impacts of conservation measures that affect large geographic areas and diverse peoples is expensive and methodologically challenging, particularly because such evaluations should capture locally defined conceptions of well-being while permitting policy-relevant comparisons. Here, we measure the impact of Tanzaniaâs Wildlife Management Areas (WMAs), a national community-based conservation and poverty reduction initiative. We use a novel, cost-effective impact evaluation method based on participatory wealth ranking and Bayesian multilevel modelling. We find that from 2007 to 2015 the impacts of WMAs on wealth were small and variable, with no clear evidence of widespread poverty reduction. Accompanying qualitative data suggest that apparently positive effects in one WMA cannot be directly attributed to WMA activities. Our results suggest that current WMA policy needs to be revisited if it is to promote positive local development
The early evolution of land plants, from fossils to genomics: a commentary on Lang (1937) âOn the plant-remains from the Downtonian of England and Wales'
Š 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. The file attached is the published version of the article
Relating characteristics of global biodiversity targets to reported progress
To inform governmental discussions on the nature of a revised Strategic Plan for Biodiversity of the Convention on Biological Diversity (CBD), we reviewed the relevant literature and assessed the framing of the 20 Aichi Biodiversity Targets in the current strategic plan. We asked international experts from nongovernmental organizations, academia, government agencies, international organizations, research institutes, and the CBD to score the Aichi Targets and their constituent elements against a set of specific, measurable, ambitious, realistic, unambiguous, scalable, and comprehensive criteria (SMART based, excluding time bound because all targets are bound to 2015 or 2020). We then investigated the relationship between these expert scores and reported progress toward the target elements by using the findings from 2 global progress assessments (Global Biodiversity Outlook and the Intergovernmental ScienceâPolicy Platform on Biodiversity and Ecosystem Services). We analyzed the data with ordinal logistic regressions. We found significant positive relationships (p < 0.05) between progress and the extent to which the target elements were perceived to be measurable, realistic, unambiguous, and scalable. There was some evidence of a relationship between progress and specificity of the target elements, but no relationship between progress and ambition. We are the first to show associations between progress and the extent to which the Aichi Targets meet certain SMART criteria. As negotiations around the postâ2020 biodiversity framework proceed, decision makers should strive to ensure that new or revised targets are effectively structured and clearly worded to allow the translation of targets into actionable policies that can be successfully implemented nationally, regionally, and globally
A partially coupled hydro-mechanical analysis of the Bengal Aquifer System under hydrological loading
The coupled poro-mechanical behaviour of geologic-fluid systems is fundamental to numerous processes in structural geology, seismology, and geotechnics, but is frequently overlooked in hydrogeology. Substantial poro-mechanical influences on groundwater head have recently been highlighted in the Bengal Aquifer System, however, driven by terrestrial water loading across the GangesâBrahmaputraâMeghna floodplains. Groundwater management in this strategically important fluvio-deltaic aquifer, the largest in southern Asia, requires a coupled hydro-mechanical approach which acknowledges poroelasticity. We present a simple partially coupled, 1-D poroelastic model of the Bengal Aquifer System, and explore the poro-mechanical responses of the aquifer to surface boundary conditions representing hydraulic head and mechanical load under three modes of terrestrial water variation. The characteristic responses, shown as amplitude and phase of hydraulic head in depth profile and of ground surface deflection, demonstrate (i) the limits to using water levels in piezometers to indicate groundwater recharge, as conventionally applied in groundwater resources management; (ii) the conditions under which piezometer water levels respond primarily to changes in the mass of terrestrial water storage, as applied in geological weighing lysimetry; (iii) the relationship of ground surface vertical deflection with changes in groundwater storage; and (iv) errors of attribution that could result from ignoring the poroelastic behaviour of the aquifer. These concepts are illustrated through application of the partially coupled model to interpret multi-level piezometer data at two sites in southern Bangladesh. There is a need for further research into the coupled responses of the aquifer due to more complex forms of surface loading, particularly from rivers
An assessment of threats to terrestrial protected areas
Protected areas (PAs) represent a cornerstone of efforts to safeguard biodiversity, and if effective should reduce threats to biodiversity. We present the most comprehensive assessment of threats to terrestrial PAs, based on in-situ data from 1,961 PAs across 149 countries, assessed by PA managers and local stakeholders. Unsustainable hunting was the most commonly reported threat and occurred in 61% of all PAs, followed by disturbance from recreational activities occurring in 55%, and natural system modifications from fire or its suppression in 49%. The number of reported threats was lower in PAs with greater remoteness, higher control of corruption and lower human development scores. The main reported threats in developing countries were linked to overexploitation for resource extraction, while negative impacts from recreational activities dominated in developed countries. Our results show that many of the most serious threats to PAs are difficult to monitor with remote sensing, and highlight the importance of in situ threat data to inform the implementation of more effective biodiversity conservation in the global protected area estate
A global analysis of management capacity and ecological outcomes in terrestrial protected areas
Protecting important sites is a key strategy for halting the loss of biodiversity. However, our understanding of the relationship between management inputs and biodiversity outcomes in protected areas (PAs) remains weak. Here, we examine biodiversity outcomes using species population trends in PAs derived from the Living Planet Database in relation to management data derived from the Management Effectiveness Tracking Tool (METT) database for 217 population timeâseries from 73 PAs. We found a positive relationship between our METTâbased scores for Capacity and Resources and changes in vertebrate abundance, consistent with the hypothesis that PAs require adequate resourcing to halt biodiversity loss. Additionally, PA age was negatively correlated with trends for the mammal subsets and PA size negatively correlated with population trends in the global subset. Our study highlights the paucity of appropriate data for rigorous testing of the role of management in maintaining species populations across multiple sites, and describes ways to improve our understanding of PA performance
A global analysis of management capacity and ecological outcomes in terrestrial protected areas
Protecting important sites is a key strategy for halting the loss of biodiversity. However, our understanding of the relationship between management inputs and biodiversity outcomes in protected areas (PAs) remains weak. Here, we examine biodiversity outcomes using species population trends in PAs derived from the Living Planet Database in relation to management data derived from the Management Effectiveness Tracking Tool (METT) database for 217 population time-series from 73 PAs. We found a positive relationship between our METT-based scores for Capacity and Resources and changes in vertebrate abundance, consistent with the hypothesis that PAs require adequate resourcing to halt biodiversity loss. Additionally, PA age was negatively correlated with trends for the mammal subsets and PA size negatively correlated with population trends in the global subset. Our study highlights the paucity of appropriate data for rigorous testing of the role of management in maintaining species populations across multiple sites, and describes ways to improve our understanding of PA performance
- âŚ